Few investigators have evaluated the usefulness of the JAK2 V617F mutation for explaining the phenotypic variations and for predicting the risk of major clinical events in primary myelofibrosis (PMF). In a transversal survey we assayed by allelespecific polymerase chain reaction (PCR) the JAK2 V617F mutational status in 304 patients with PMF. Multiple DNA samples were collected prospectively from 64 patients, and a highly sensitive quantitative PCR was used as a confirmatory test. In a longitudinal prospective study we determined the progression rate to clinically relevant outcomes in 174 patients who had JAK2 mutation determined at diagnosis. JAK2 V617F was identified in 63.4% of patients. None of the V617F-negative patients who were sequentially genotyped progressed to become V617F positive, whereas progression rate from heterozygous to homozygous mutation was 10 per 100 patient-years. JAK2 V617F mutation contributed to hemoglobin, aquagenic pruritus, and platelet count variability, whereas homozygous mutation was independently associated with higher white blood cell count, larger spleen size, and greater need for cytoreductive therapies. Adjusting for conventional risk factors, V617F mutation independently predicted the evolution toward large splenomegaly, need of splenectomy, and leukemic transformation. We conclude that JAK2 V617F genotype should be considered in any future risk stratification of patients with PMF. (Blood. 2007;110: [4030][4031][4032][4033][4034][4035][4036]
Summary. Background: Megakaryocytes release platelets from the tips of cytoplasmic extensions, called proplatelets. In humans, the regulation of this process is still poorly characterized. Objective: To analyse the regulation of proplatelet formation by megakaryocyte adhesion to extracellular adhesive proteins through different membrane receptors. Methods: Human megakaryocytes were obtained by differentiation of cord blood-derived CD34 + cells, and proplatelet formation was evaluated by phase contrast and fluorescence microscopy. Results: We found that human megakaryocytes extended proplatelets in a time-dependent manner. Adhesion to fibrinogen, fibronectin or von Willebrand factor (VWF) anticipated the development of proplatelets, but dramatically limited both amplitude and duration of the process. Type I, but not type III or type IV, collagen totally suppressed proplatelet extension, and this effect was overcome by the myosin IIA antagonist blebbistatin. Integrin aIIbb3 was essential for megakaryocyte spreading on fibrinogen or VWF, but was not required for proplatelet formation. In contrast, proplatelet formation was prevented by blockade of GPIb-IX-V, or upon cleavage of GPIba by the metalloproteinase mocarhagin. Membraneassociated VWF was detected exclusively on proplateletforming megakaryocytes, but not on round mature cells that do not extend proplatelets. Conclusions: Our findings show that proplatelet formation in human megakaryocytes undergoes a complex spatio-temporal regulation orchestrated by adhesive proteins, GPIb-IX-V and myosin IIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.