Sperm apoptosis did not seem to be correlated with semen quality. In the absence of genito-urinary infection, one of the main functions of seminal leukocytes is probably to provide for the removal of apoptotic sperm.
A down-modulation of both the 55-kDa (TNF-R55) and the 75-kDa (TNF-R75) TNF receptors is observed in neutrophils exposed to a variety of stimuli. Proteolytic cleavage of the extracellular region of both receptors (shedding) and, with TNF, internalization of TNF-R55 and shedding of TNF-R75 are the proposed mechanisms. We have characterized the TNF-induced shedding of TNF receptors in neutrophils and determined the nature of the involved proteinase. Neutrophils exposed to TNF release both TNF receptors. A release of TNF receptors comparable to that observed with TNF was induced with TNF-R55-specific reagents (mAbs and a mutant of TNF) but not with the corresponding TNF-R75-specific reagents. A hydroxamic acid compound (KB8301) almost completely inhibited shedding of TNF-R55 and to a lesser degree shedding of TNF-R75. KB8301 also inhibited FMLP-induced shedding to a similar extent. Shedding was also inhibited by 1,10-phenanthroline, but this effect was considered nonspecific as the compound, at variance with KB8301, almost completely inhibited TNF and FMLP-induced PMN activation. Diisopropylfluorophosphate partially inhibited shedding of TNF-R75, suggesting the contribution of a serine proteinase to the release of this receptor. Shedding activity was not affected by matrix metalloproteinases inhibitors nor was it released in the supernatants of FMLP-stimulated neutrophils. These results suggest that TNF induces release of its receptors, that such a release is mediated via TNF-R55, and that a membrane-bound and non-matrix metalloproteinase is involved in the process. The possibility that ADAM-17, which we show to be expressed in neutrophils, might be the involved proteinase is discussed.
Borrelia burgdorferi, the etiological agent of Lyme disease, comprises three genospecies, Borrelia garinii, afzelii, and burgdorferi sensu strictu, that exhibit different pathogenicity and differ in the susceptibility to C-mediated killing. We examined C-sensitive and C-resistant strains of B. burgdorferi for deposition of C3 and late C components by fluorescence microscope and flow cytometry. Despite comparable deposition of C3 on the two strains, the resistant strain exhibited reduced staining for C6 and C7, barely detectable C9, and undetectable poly C9. Based on these findings, we searched for a protein that inhibits assembly of C membrane attack complex and documented an anti-human CD59-reactive molecule on the surface of C-resistant spirochetes by flow cytometry and electron microscopy. A molecule of 80 kDa recognized by polyclonal and monoclonal anti-CD59 Abs was identified in the membrane extract of C-resistant strains by SDS-PAGE and Western blot analysis. The molecule was released from the bacterial wall using deoxycholate and trypsin, suggesting its insertion into the bacterial membrane. The CD59-like molecule acts as C inhibitor on Borrelia because incubation with F(ab′)2 anti-CD59 renders the serum-resistant strain exquisitely susceptible to C-mediated killing and guinea pig erythrocytes bearing C5b-8, unlike the RBC coated with C5b-7, are protected from reactive lysis by the bacterial extract. Western blot analysis revealed preferential binding of the C inhibitory molecule to C9 and weak interaction with C8β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.