Background Patients with COVID-19 can develop acute respiratory distress syndrome (ARDS), which is associated with high mortality. The aim of this study was to examine the functional and morphological features of COVID-19-associated ARDS and to compare these with the characteristics of ARDS unrelated to COVID-19. Methods This prospective observational study was done at seven hospitals in Italy. We enrolled consecutive, mechanically ventilated patients with laboratory-confirmed COVID-19 and who met Berlin criteria for ARDS, who were admitted to the intensive care unit (ICU) between March 9 and March 22, 2020. All patients were sedated, paralysed, and ventilated in volume-control mode with standard ICU ventilators. Static respiratory system compliance, the ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air, ventilatory ratio (a surrogate of dead space), and D-dimer concentrations were measured within 24 h of ICU admission. Lung CT scans and CT angiograms were done when clinically indicated. A dataset for ARDS unrelated to COVID-19 was created from previous ARDS studies. Survival to day 28 was assessed. Findings Between March 9 and March 22, 2020, 301 patients with COVID-19 met the Berlin criteria for ARDS at participating hospitals. Median static compliance was 41 mL/cm H 2 O (33–52), which was 28% higher than in the cohort of patients with ARDS unrelated to COVID-19 (32 mL/cm H 2 O [25–43]; p<0·0001). 17 (6%) of 297 patients with COVID-19-associated ARDS had compliances greater than the 95th percentile of the classical ARDS cohort. Total lung weight did not differ between the two cohorts. CT pulmonary angiograms (obtained in 23 [8%] patients with COVID-19-related ARDS) showed that 15 (94%) of 16 patients with D-dimer concentrations greater than the median had bilateral areas of hypoperfusion, consistent with thromboembolic disease. Patients with D-dimer concentrations equal to or less than the median had ventilatory ratios lower than those of patients with D-dimer concentrations greater than the median (1·66 [1·32–1·95] vs 1·90 [1·50–2·33]; p=0·0001). Patients with static compliance equal to or less than the median and D-dimer concentrations greater than the median had markedly increased 28-day mortality compared with other patient subgroups (40 [56%] of 71 with high D-dimers and low compliance vs 18 [27%] of 67 with low D-dimers and high compliance, 13 [22%] of 60 with low D-dimers and low compliance, and 22 [35%] of 63 with high D-dimers and high compliance, all p=0·0001). Interpretation Patients with COVID-19-associated ARDS have a form of injury that, in many aspects, is similar to that of those with ARDS unrelated to COVID-19. Notably, patients with COVID-19-related ARDS who have a reduction in respiratory system compliance together with increased D-dim...
Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of deep learning algorithms, trained in a diverse multinational cohort of 1280 patients to localize parietal pleura/lung parenchyma followed by classification of COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93% specificity, as evaluated in an independent test set (not included in training and validation) of 1337 patients. Normal controls included chest CTs from oncology, emergency, and pneumonia-related indications. The false positive rate in 140 patients with laboratory confirmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related pneumonias with high specificity in diverse patient populations.
This article provides an overview of radiofrequency ablation (RFA) and microwave ablation (MWA) for treatment of primary liver tumors and hepatic metastasis. Only studies reporting RFA and MWA safety and efficacy on liver were retained. We found 40 clinical studies that satisfied the inclusion criteria. RFA has become an established treatment modality because of its efficacy, reproducibility, low complication rates, and availability. MWA has several advantages over RFA, which may make it more attractive to treat hepatic tumors. According to the literature, the overall survival, local recurrence, complication rates, disease‐free survival, and mortality in patients with hepatocellular carcinoma (HCC) treated with RFA vary between 53.2 ± 3.0 months and 66 months, between 59.8% and 63.1%, between 2% and 10.5%, between 22.0 ± 2.6 months and 39 months, and between 0% and 1.2%, respectively. According to the literature, overall survival, local recurrence, complication rates, disease‐free survival, and mortality in patients with HCC treated with MWA (compared with RFA) vary between 22 months for focal lesion >3 cm (vs. 21 months) and 50 months for focal lesion ≤3 cm (vs. 27 months), between 5% (vs. 46.6%) and 17.8% (vs. 18.2%), between 2.2% (vs. 0%) and 61.5% (vs. 45.4%), between 14 months (vs. 10.5 months) and 22 months (vs. no data reported), and between 0% (vs. 0%) and 15% (vs. 36%), respectively. According to the literature, the overall survival, local recurrence, complication rates, and mortality in liver metastases patients treated with RFA (vs. MWA) are not statistically different for both the survival times from primary tumor diagnosis and survival times from ablation, between 10% (vs. 6%) and 35.7% (vs. 39.6), between 1.1% (vs. 3.1%) and 24% (vs. 27%), and between 0% (vs. 0%) and 2% (vs. 0.3%). MWA should be considered the technique of choice in selected patients, when the tumor is ≥3 cm in diameter or is close to large vessels, independent of its size. Implications for Practice Although technical features of the radiofrequency ablation (RFA) and microwave ablation (MWA) are similar, the differences arise from the physical phenomenon used to generate heat. RFA has become an established treatment modality because of its efficacy, reproducibility, low complication rates, and availability. MWA has several advantages over RFA, which may make it more attractive than RFA to treat hepatic tumors. The benefits of MWA are an improved convection profile, higher constant intratumoral temperatures, faster ablation times, and the ability to use multiple probes to treat multiple lesions simultaneously. MWA should be considered the technique of choice when the tumor is ≥3 cm in diameter or is close to large vessels, independent of its size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.