Stem cells, derived from human adult dental pulp of healthy subjects 30-45 years of age, were cultured, and cells were selected using a FACSorter. A new c-kit + /CD34 + /CD45 − cell population of stromal bone producing cells (SBP/DPSCs) was selected, expanded, and cultured. These SBP/DPSCs are highly clonogenic and, in culture, differentiate into osteoblast precursors (CD44 + /RUNX-2 + ), still capable of selfrenewing, and then in osteoblasts, producing, in vitro, a living autologous fibrous bone (LAB) tissue, which is markedly positive for several bone antibodies. This tissue constitute an ideal source of osteoblasts and mineralized tissue for bone regeneration. In fact, after in vivo transplantation into immunocompromised rats, LAB formed lamellar bone-containing osteocytes.
Stromal stem cells from human dental pulp (SBP-DPSCs) were used to study osteogenic differentiation in vitro and in vivo. We previously reported that SBP-DPSCs are multipotent stem cells able to differentiate into osteoblasts, which synthesize threedimensional woven bone tissue chips in vitro. In this study, we followed the temporal expression pattern of specific markers in SBP-DPSCs and found that, when differentiating into osteoblasts, they express, besides osteocalcin, also flk-1 (VEGF-R2). In addition, 30% of them expressed specific antigens for endothelial cells, including CD54, von-Willebrand (domain 1 and 2), CD31 (PECAM-1) and angiotensin-converting enzyme. Interestingly, we found endotheliocytes forming vessel walls, observing that stem cells synergically differentiate into osteoblasts and endotheliocytes, and that flk-1 exerts a pivotal role in coupling osteoblast and endotheliocyte differentiation. When either SBP-DPSCs or bone chips obtained in vitro were transplanted into immunocompromised rats, they generated a tissue structure with an integral blood supply similar to that of human adult bone; in fact, a large number of HLA-1 þ vessels were observed either within the bone or surrounding it in a periosteal layer. This study provides direct evidence to suggest that osteogenesis and angiogenesis mediated by human SBP-DPSCs may be regulated by distinct mechanisms, leading to the organization of adult bone tissue after stem cell transplantion.
In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs) and a collagen sponge scaffold for oro-maxillo-facial (OMF) bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.
Primary tumors are responsible for 10% of cancer deaths. In most cases, the main cause of mortality is the formation of metastases. Accumulating evidence suggests that a subpopulation of tumor cells with distinct stem-like properties is responsible for tumor initiation, invasive growth, and metastasis formation. This population is defined as cancer stem cells (CSCs). Existing therapies have enhanced the length of survival after diagnosis of cancer but have completely failed in terms of recovery. CSCs appear to be resistant to chemotherapy, may remain quiescent for extended periods, and have affinity for hypoxic environments. The CSCs can be identified and isolated by different methodologies, including isolation by CSC-specific cell surface marker expression, detection of side population phenotype by Hoechst 33342 exclusion, assessment of their ability to grow as floating spheres, and aldehyde dehydrogenase (ALDH) activity assay. None of the methods mentioned are exclusively used to isolate the solid tumor CSCs, highlighting the imperative to delineate more specific markers or to use combinatorial markers and methodologies. This review provides an overview of the main characteristics and approaches used to identify, isolate, and characterize CSCs from solid tumors.
BackgroundOsteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances.Methodology and Principal FindingsIn this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency.ConclusionsTaken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.