Quinolone antibiotics represent one of the most important classes of anti-infective agents and, although still clinically valuable, their use has been compromised by the increasing emergence of resistant strains, which has become a prevalent clinical problem. Quinolones act by inhibiting the activity of DNA gyrase and topoisomerase IV - two essential bacterial enzymes that modulate the chromosomal supercoiling required for critical nucleic acid processes. The acquisition of quinolone resistance is recognized to be multifactorial and complex. The main resistance mechanism consists of one or a combination of target-site gene mutations that alter the drug-binding affinity of target enzymes. However, other mechanisms such as mutations that lead to reduced intracellular drug concentrations, by either decreased uptake or increased efflux, and plasmid-encoded resistance genes producing either target protection proteins, drug-modifying enzymes or multidrug efflux pumps are known to contribute additively to quinolone resistance. The understanding of these different resistance mechanisms has improved significantly in recent years; however, many details remain to be clarified and the contribution of less-studied mechanisms still needs to be better elucidated in order to fully understand this phenotype.
Given the significant spatial and temporal heterogeneity in antimicrobial resistance distribution and the factors that affect its evolution, dissemination, and persistence, it is important to highlight that antimicrobial resistance must be viewed as an ecological problem. Monitoring the resistance prevalence of indicator bacteria such as Escherichia coli and enterococci in wild animals makes it possible to show that wildlife has the potential to serve as an environmental reservoir and melting pot of bacterial resistance. These researchers address the issue of antimicrobial-resistant microorganism proliferation in the environment and the related potential human health and environmental impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.