Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a ‘loophole’ in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 (TH2) responses, TLR-mediated Arg1 induction was independent of the TH2-associated STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival in T. gondii infection and decreased lung bacterial load in tuberculosis infection.
Fifty million new infections with Mycobacterium tuberculosis occur annually, claiming 2-3 million lives from tuberculosis worldwide. Despite the apparent lack of significant genetic heterogeneity between strains of M. tuberculosis, there is mounting evidence that considerable heterogeneity exists in molecules important in disease pathogenesis. These differences may manifest in the ability of some isolates to modify the host cellular immune response, thereby contributing to the observed diversity of clinical outcomes. Here we describe the identification and functional relevance of a highly biologically active lipid species-a polyketide synthase-derived phenolic glycolipid (PGL) produced by a subset of M. tuberculosis isolates belonging to the W-Beijing family that show 'hyperlethality' in murine disease models. Disruption of PGL synthesis results in loss of this hypervirulent phenotype without significantly affecting bacterial load during disease. Loss of PGL was found to correlate with an increase in the release of the pro-inflammatory cytokines tumour-necrosis factor-alpha and interleukins 6 and 12 in vitro. Furthermore, the overproduction of PGL by M. tuberculosis or the addition of purified PGL to monocyte-derived macrophages was found to inhibit the release of these pro-inflammatory mediators in a dose-dependent manner.
SummaryThalidomide selectively inhibits the production of human monocyte tumor necrosis factor a (TNF-a) when these cells are triggered with lipopolysaccharide and other agonists in culture. 40% inhibition occurs at the clinically achievable dose of the drug of 1 Ag/ml . In contrast, the amount of total protein and individual proteins labeled with [31 S]methionine and expressed on SDS-PAGE are not influenced . The amounts of interleukin 10 (11,1(3), Ilr6, and granulocyte/ macrophage colony-stimulating factor produced by monorytes remain unaltered . The selectivity of this drug may be useful in determining the role of TNF-a in vivo and modulating its toxic effects in a clinical setting.
To understand how virulent mycobacteria subvert host immunity and establish disease, we examined the differential response of mice to infection with various human outbreak Mycobacterium tuberculosis clinical isolates. One clinical isolate, HN878, was found to be hypervirulent, as demonstrated by unusually early death of infected immune-competent mice, compared with infection with other clinical isolates. The differential effect on survival required lymphocyte function because severe combined immunodeficiency (SCID) mice infected with HN878 or other clinical isolates all died at the same rate. The hypervirulence of HN878 was associated with failure to induce M. tuberculosis-specific proliferation and IFN-␥ production by spleen and lymph node cells from infected mice. In addition, 2-to 4-fold lower levels of tumor necrosis factor-␣ (TNF-␣), IL-6, IL-12, and IFN-␥ mRNAs were observed in lungs of HN878-infected mice. IL-10, IL-4, and IL-5 mRNA levels were not significantly elevated in lungs of HN878 infected mice. In contrast, IFN-␣ mRNA levels were significantly higher in lungs of these mice. To further investigate the role of Type 1 IFNs, mice infected with HN878 were treated intranasally with purified IFN-␣͞. The treatment resulted in increased lung bacillary loads and even further reduced survival. These results suggest that the hypervirulence of HN878 may be due to failure of this strain to stimulate Th1 type immunity. In addition, the lack of development of Th1 immunity in response to HN878 appears to be associated with increased induction of Type 1 IFNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.