The Om-toxins are short peptides (23-27 amino acids) purified from the venom of the scorpion Opisthacanthus madagascariensis. Their pharmacological targets are thought to be potassium channels. Like Csalpha/beta (cystine-stabilized alpha/beta) toxins, the Om-toxins alter the electrophysiological properties of these channels; however, they do not share any sequence similarity with other scorpion toxins. We herein demonstrate by electrophysiological experiments that Om-toxins decrease the amplitude of the K+ current of the rat channels Kv1.1 and Kv1.2, as well as human Kv1.3. We also determine the solution structure of three of the toxins by use of two-dimensional proton NMR techniques followed by distance geometry and molecular dynamics. The structures of these three peptides display an uncommon fold for ion-channel blockers, Csalpha/alpha (cystine-stabilized alpha-helix-loop-helix), i.e. two alpha-helices connected by a loop and stabilized by two disulphide bridges. We compare the structures obtained and the dipole moments resulting from the electrostatic anisotropy of these peptides with those of the only other toxin known to share the same fold, namely kappa-hefutoxin1.
In a previous study we have shown that llama VHH antibody fragments are able to bind their antigen after a heat shock of 90°C, in contrast to the murine monoclonal antibodies. However, the molecular mechanism by which antibody:antigen interaction occurs under these extreme conditions remains unclear. To examine in more detail the structural and thermodynamic aspects of the binding mechanism, an extensive CD, ITC, and NMR study was initiated. In this study the interaction between the llama VHH -R2 fragment and its antigen, the dye Reactive Red-6 (RR6) has been explored. The data show clearly that most of the VHH-R2 population at 80°C is in an unfolded conformation. In contrast, CD spectra representing the complex between VHH-R2 and the dye remained the same up to 80°C. Interestingly, addition of the dye to the denatured VHH-R2 at 80°C yielded the spectrum of the native complex. These results suggest an induced refolding of denatured VHH-R2 by its antigen under these extreme conditions. This induced refolding showed some similarities with the well established "induced fit" mechanism of antibodyantigen interactions at ambient temperature. However, the main difference with the "induced fit" mechanism is that at the start of the addition of the antigen most of the VHH molecules are in an unfolded conformation. The refolding capability under these extreme conditions and the stable complex formation make VHHs useful in a wide variety of applications. Proteins 2005;59:555-564.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.