The present work aims at evaluating the effect of the impeller-diffuser interaction on the control of a hub corner separation, which develops in the radial vaned diffuser of a centrifugal compressor designed and built by Turbomeca, Safran group. Unsteady numerical simulations of the flow in the aspirated centrifugal compressor are then performed. Numerical results are validated by comparison with the available experimental results. The analysis of the numerical flow field shows that the hub-corner separation is not completely removed by the suction, on the contrary to the steady-state results that were obtained in previous work. The boundary layer separation is only translated downstream. Its location is explained by the scrolling of the pressure waves generated by the impeller-diffuser interaction, which strengthen when crossing the diffuser throat. This result highlights the major role played by the impeller-diffuser interaction, which should be taken into account for developing control strategies in radial vaned diffusers, and stresses the shortcoming of the steady-state numerical model when suction is applied.
An optimization process is used to design bladings in turbomachinery. A gradient-based method is coupled to Navier-Stokes solvers and is applied to three different bladings. A new rotor blade of a transonic compressor is designed by using a quasi three-dimensional approach, with a significant efficiency improvement at the design point. The off-design behavior of this new compressor is also checked afterwards. The same quasi three-dimensional approach is used on a stator blade of a turbine, but the whole stage is computed in this case. The losses are locally reduced, proving the good sensitivity of the solver. Finally, a new three-dimensional rotor blade of a compressor is designed by applying deformation functions on the initial shape. The efficiency is improved over a wide range of mass flow. The whole results indicate that the optimization process can find improved design and can be integrated in a design procedure.
An optimization process is used to design bladings in turbomachinery. A gradient-based method is coupled to Navier-Stokes solvers and is applied to three different bladings. A new rotor blade of a transonic compressor is designed by using a Q3D approach, with a significant efficiency improvement at the design point. The off-design behavior of this new compressor is also checked afterwards. The same Q3D approach is used on a stator blade of a turbine, but the whole stage is computed in this case. The losses are locally reduced, proving the good sensitivity of the solver. Finally, a new three-dimensional rotor blade of a compressor is designed by applying deformation functions on the initial shape. The efficiency is improved over a wide range of mass flow. The whole results indicate that the optimization process can find improved design and can be integrated in a design procedure.
The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads-from a steady-state calculations point of view-to an increase by 40% of the compressor operating range extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.