The pro-oncogenic transcription factor STAT3 is constitutively activated in a wide variety of tumours that often become addicted to its activity, but no unifying view of a core function determining this widespread STAT3-dependence has yet emerged. We show here that constitutively active STAT3 acts as a master regulator of cell metabolism, inducing aerobic glycolysis and down-regulating mitochondrial activity both in primary fibroblasts and in STAT3-dependent tumour cell lines. As a result, cells are protected from apoptosis and senescence while becoming highly sensitive to glucose deprivation. We show that enhanced glycolysis is dependent on HIF-1α up-regulation, while reduced mitochondrial activity is HIF-1α-independent and likely caused by STAT3-mediated down-regulation of mitochondrial proteins. The induction of aerobic glycolysis is an important component of STAT3 pro-oncogenic activities, since inhibition of STAT3 tyrosine phosphorylation in the tumour cell lines down-regulates glycolysis prior to leading to growth arrest and cell death, both in vitro and in vivo. We propose that this novel, central metabolic role is at the core of the addiction for STAT3 shown by so many biologically different tumours.
Gd-HPDO3A has been internalized into rat hepatocarcinoma cells in the cytoplasm (by electroporation) or in intracellular vesicles (by pinocytosis), respectively. In the former case, the observed relaxation rates are likely dependent upon the amount of internalized paramagnetic complex, whereas in the latter case the relaxation enhancement is "quenched" to a plateau value (about 3 s ؊1 ) when the entrapped amount of Gd-chelate is higher than 1 ؋ 10 10 Gd/cell. The observed behavior has been accounted in terms of a theoretical treatment based on equa
An overactivation of hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) axis promotes tumorigenesis and tumor progression in various cancer types. Research data recently evidenced that HGF/MET signaling is also involved also in the immune response, mainly modulating dendritic cells functions. In general, the pathway seems to play an immunosuppressive role, thus hypothesizing that it could constitute a mechanism of primary and acquired resistance to cancer immunotherapy. Recently, some approaches are being developed, including drug design and cell therapy to combine MET and programmed cell death receptor-1 (PD-1)/programmed cell death receptor-ligand 1 (PD-L1) inhibition. This approach could represent a new weapon in cancer therapy in the future.
New imaging techniques that couple anatomical resolution to sensitivity may greatly contribute to improving islet transplantation. In the present work, a report is given of the direct detection of islets by magnetic resonance imaging (MRI) after ex vivo cell labeling with the MRI T(1) contrast agent GdHPDO3A. Experiments on mouse and human islets demonstrated well-tolerated uptake of GdHPDO3A, based on morphology, viability, glucose-dependent insulin response and apoptosis/toxicity gene array profile. GdHPDO3A loading was sufficient for in vitro MRI cell detection. In vivo isotransplanted mouse islets into the kidney capsule and xenotransplanted human islets within the mouse liver were detected. Imaging specificity was supported by the absence of signal in unlabeled islet transplants, its persistence upon using fat-suppression MRI protocols and the colocalization with the transplanted islets. In conclusion, direct islet imaging with high spatial and contrast resolution after labeling with GdHPDO3A is demonstrated, allowing visualization of kidney subcapsular mouse islet grafts and intrahepatic human islet xenografts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.