CD38 is a transmembrane glycoprotein with ectoenzymatic activity involved in regulation of migration, signal transduction, and receptor-mediated adhesion. CD38 is highly expressed on various malignant cells, including multiple myeloma (MM), and at relatively low levels in other tissues, making it a suitable target for therapeutic antibodies. Several anti-CD38 therapies have been, or are being, developed for the treatment of MM, including daratumumab and isatuximab (SAR650984), respectively. Studies have shown that anti-CD38 therapies are effective in the treatment of relapsed/refractory MM and are well tolerated, with infusion reactions being the most common side effects. They can be used as monotherapy or in combination with immunomodulatory agents, such as pomalidomide, or proteasome inhibitors to potentiate their activity. Here we examine isatuximab and several anti-CD38 agents in development that were generated using new antibody engineering techniques and that may lead to more effective CD38 targeting. We also summarize trials assessing these antibodies in MM, other malignancies, and solid organ transplantation. Finally, we propose that further research on the mechanisms of resistance to anti-CD38 therapy and the development of biomarkers and new backbone regimens with CD38 antibodies will be important steps in building more personalized treatment for patients with MM.
Targeted inhibition of Bruton tyrosine kinase (BTK) with the irreversible inhibitor ibrutinib has improved outcomes for patients with hematologic malignancies, including chronic lymphocytic leukemia (CLL). Here, we describe preclinical investigations of ARQ 531, a potent, reversible inhibitor of BTK with additional activity against Src family kinases and kinases related to ERK signaling. We hypothesized that targeting additional kinases would improve global inhibition of signaling pathways, producing more robust responses. treatment of patient CLL cells with ARQ 531 decreases BTK-mediated functions including B-cell receptor (BCR) signaling, viability, migration, CD40 and CD86 expression, and NF-κB gene transcription., ARQ 531 was found to increase survival over ibrutinib in a murine Eμ-TCL1 engraftment model of CLL and a murine Eμ-MYC/TCL1 engraftment model resembling Richter transformation. Additionally, ARQ 531 inhibits CLL cell survival and suppresses BCR-mediated activation of C481S BTK and PLCγ2 mutants, which facilitate clinical resistance to ibrutinib. This study characterizes a rationally designed kinase inhibitor with efficacy in models recapitulating the most common mechanisms of acquired resistance to ibrutinib. Reversible BTK inhibition is a promising strategy to combat progressive CLL, and multikinase inhibition demonstrates superior efficacy to targeted ibrutinib therapy in the setting of Richter transformation. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.