To understand why cancer vaccine-induced T cells often fail to eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund’s adjuvant (IFA), commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8+ T cells, which accumulated not in tumors but at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, Interferon-γ (IFN-γ) and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of anti-CD40 antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination site sequestration. A non-persisting vaccine formulation shifted T cell localization towards tumors, inducing superior anti-tumor activity while reducing systemic T cell dysfunction and promoting memory formation. Persisting peptide/IFA vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Background: ⌬Np63 expression correlates with an epithelial phenotype and adverse clinical outcome. Results: ⌬Np63␣ suppressed ZEB1/2 and invasion in part by promoting miR-205 transcription, and tumor miR-205 expression is a marker of poor survival. Conclusion: ⌬Np63␣ inhibits EMT in part via miR-205. Significance: We show that ⌬Np63␣ directly regulates miR-205 and that these effects contribute to EMT suppression. The results provide important insight into the biology of lethal bladder cancer.
Cell-free (cf) DNA from plasma offers an easily obtainable material for BRAF mutation analysis for diagnostics and response monitoring. In this study, plasma-derived cfDNA samples from patients with progressing advanced cancers or malignant histiocytosis with known BRAF V600 status from formalin-fixed paraffinembedded (FFPE) tumors were tested using a prototype version of the Idylla BRAF Mutation Test, a fully integrated real-time PCRbased test with turnaround time about 90 minutes. Of 160 patients, BRAF V600 mutations were detected in 62 (39%) archival FFPE tumor samples and 47 (29%) plasma cfDNA samples. The two methods had overall agreement in 141 patients [88%; k, 0.74; SE, 0.06; 95% confidence interval (CI), 0.63-0.85]. Idylla had a sensitivity of 73% (95% CI, 0.60-0.83) and specificity of 98%
The effects of AURKA overexpression associated with poor clinical outcomes have been attributed to increased cell cycle progression and the development of genomic instability with aneuploidy. We used RNA interference to examine the effects of AURKA overexpression in human bladder cancer cells. Knockdown had minimal effects on cell proliferation but blocked tumor cell invasion. Whole genome mRNA expression profiling identified nicotinamide N-methyltransferase (NNMT) as a downstream target that was repressed by AURKA. Chromatin immunoprecipitation and NNMT promoter luciferase assays revealed that AURKA’s effects on NNMT were caused by PAX3-mediated transcriptional repression and overexpression of NNMT blocked tumor cell invasion in vitro. Overexpression of AURKA and activation of its downstream pathway was enriched in the basal subtype in primary human tumors and was associated with poor clinical outcomes. We also show that the FISH test for the AURKA gene copy number in urine yielded a specificity of 79.7% (95% confidence interval [CI] = 74.2% to 84.1%), and a sensitivity of 79.6% (95% CI = 74.2% to 84.1%) with an AUC of 0.901 (95% CI = 0.872 to 0.928; P < 0.001). These results implicate AURKA as an effective biomarker for bladder cancer detection as well as therapeutic target especially for its basal type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.