Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked recessive disorder characterized by slowly progressing contractures, wasting of skeletal muscle and cardiomyopathy. Heart block is a frequent cause of death. The disease gene has been mapped to distal Xq28. Among many genes in this region, we selected eight transcripts expressed at high levels in skeletal muscle, heart and/or brain as the best candidates for the disease. We now report, in all five patients studied, unique mutations in one of the genes, STA: these mutations result in the loss of all or part of the protein. The EDMD gene encodes a novel serine-rich protein termed emerin, which contains a 20 amino acid hydrophobic domain at the C terminus, similar to that described for many membrane proteins of the secretory pathway involved in vesicular transport.
Multiple endocrine neoplasia type 2 (MEN 2) comprises three clinically distinct, dominantly inherited cancer syndromes. MEN 2A patients develop medullary thyroid carcinoma (MTC) and phaeochromocytoma. MEN 2B patients show in addition ganglioneuromas of the gastrointestinal tract and skeletal abnormalities. In familial MTC, only the thyroid is affected. Germ-line mutations of the RET proto-oncogene have recently been reported in association with MEN 2A and familial MTC. All mutations occurred within codons specifying cysteine residues in the transition point between the RET protein extracellular and transmembrane domains. We now show that MEN 2B is also associated with mutation of the RET proto-oncogene. A mutation in codon 664, causing the substitution of a threonine for a methionine in the tyrosine kinase domain of the protein, was found in all nine unrelated MEN 2B patients studied. The same mutation was found in six out of 18 sporadic tumours.
Waardenburg syndrome (WS; deafness with pigmentary abnormalities) and Hirschsprung's disease (HSCR; aganglionic megacolon) are congenital disorders caused by defective function of the embryonic neural crest. WS and HSCR are associated in patients with Waardenburg-Shah syndrome (WS4), whose symptoms are reminiscent of the white coat-spotting and aganglionic megacolon displayed by the mouse mutants Dom (Dominant megacolon), piebald-lethal (sl) and lethal spotting (ls). The sl and ls phenotypes are caused by mutations in the genes encoding the Endothelin-B receptor (Ednrb) and Endothelin 3 (Edn3), respectively. The identification of Sox10 as the gene mutated in Dom mice (B.H. et al., manuscript submitted) prompted us to analyse the role of its human homologue SOX10 in neural crest defects. Here we show that patients from four families with WS4 have mutations in SOX10, whereas no mutation could be detected in patients with HSCR alone. These mutations are likely to result in haploinsufficiency of the SOX10 product. Our findings further define the locus heterogeneity of Waardenburg-Hirschsprung syndromes, and point to an essential role of SOX10 in the development of two neural crest-derived human cell lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.