We hereby propose a novel approach to the identification of ischemic stroke (IS) susceptibility genes that involves converging data from several unbiased genetic and genomic tools. We tested the association between IS and genes differentially expressed between cases and controls, then determined which data mapped to previously reported linkage peaks and were nominally associated with stroke in published genome-wide association studies. We first performed gene expression profiling in peripheral blood mononuclear cells of 20 IS cases and 20 controls. Sixteen differentially expressed genes mapped to reported whole-genome linkage peaks, including the TTC7B gene, which has been associated with major cardiovascular disease. At the TTC7B locus, 46 tagging polymorphisms were tested for association in 565 Portuguese IS cases and 520 controls. Markers nominally associated in at least one test and defining associated haplotypes were then examined in 570 IS Spanish cases and 390 controls. Several polymorphisms and haplotypes in the intron 5-intron 6 region of TTC7B were also associated with IS risk in the Spanish and combined data sets. Multiple independent lines of evidence therefore support the role of TTC7B in stroke susceptibility, but further work is warranted to identify the exact risk variant and its pathogenic potential.
BackgroundMultiple lines of evidence suggest that genetic factors contribute to stroke recovery. The matrix metalloproteinases -2 (MMP-2) and -9 (MMP-9) are modulators of extracellular matrix components, with important regulatory functions in the Central Nervous System (CNS). Shortly after stroke, MMP-2 and MMP-9 have mainly damaging effects for brain tissue. However, MMPs also have a beneficial activity in angiogenesis and neurovascular remodelling during the delayed neuroinflammatory response phase, thus possibly contributing to stroke functional recovery.MethodsIn the present study, the role of MMP-2 and MMP-9 genetic variants in stroke recovery was investigated in 546 stroke patients. Functional outcome was assessed three months after a stroke episode using the modified Rankin Scale (mRS), and patients were classified in two groups: good recovery (mRS ≤ 1) or poor recovery (mRS>1). Haplotype tagging single nucleotide polymorphisms (SNPs) in the MMP-2 (N = 21) and MMP-9 (N = 4) genes were genotyped and tested for association with stroke outcome, adjusting for significant non-genetic clinical variables.ResultsSix SNPs in the MMP-2 gene were significantly associated with stroke outcome (0.0018
BackgroundThe genetic contribution to stroke is well established but it has proven difficult to identify the genes and the disease-associated alleles mediating this effect, possibly because only nuclear genes have been intensely investigated so far. Mitochondrial DNA (mtDNA) has been implicated in several disorders having stroke as one of its clinical manifestations. The aim of this case-control study was to assess the contribution of mtDNA polymorphisms and haplogroups to ischemic stroke risk.MethodsWe genotyped 19 mtDNA single nucleotide polymorphisms (SNPs) defining the major European haplogroups in 534 ischemic stroke patients and 499 controls collected in Portugal, and tested their allelic and haplogroup association with ischemic stroke risk.ResultsHaplogroup H1 was found to be significantly less frequent in stroke patients than in controls (OR = 0.61, 95% CI = 0.45–0.83, p = 0.001), when comparing each clade against all other haplogroups pooled together. Conversely, the pre-HV/HV and U mtDNA lineages emerge as potential genetic factors conferring risk for stroke (OR = 3.14, 95% CI = 1.41–7.01, p = 0.003, and OR = 2.87, 95% CI = 1.13–7.28, p = 0.021, respectively). SNPs m.3010G>A, m.7028C>T and m.11719G>A strongly influence ischemic stroke risk, their allelic state in haplogroup H1 corroborating its protective effect.ConclusionOur data suggests that mitochondrial haplogroup H1 has an impact on ischemic stroke risk in a Portuguese sample.
Cerebrovascular and cardiovascular diseases are the leading causes of death and disability worldwide. They are complex disorders resulting from the interplay of genetic and environmental factors, and may share several susceptibility genes. Several recent studies have implicated variants of the Kalirin (KALRN) gene with susceptibility to cardiovascular and metabolic phenotypes, but no studies have yet been performed in stroke patients. KALRN is involved, among others, in the inhibition of inducible nitric oxide synthase, in the regulation of ischemic signal transduction, and in neuronal morphogenesis, plasticity, and stability. The goal of the present study was to determine whether SNPs in the KALRN region on 3q13, which includes the Ropporin gene (ROPN1), predispose to ischemic stroke (IS) in a cohort of Portuguese patients and controls. We genotyped 34 tagging SNPs in the KALRN and ROPN1 chromosomal region on 565 IS patients and 517 unrelated controls, and performed genotype imputation for 405 markers on chromosome 3. We tested the singlemarker association of these SNPs with IS. One SNP (rs4499545) in the ROPN1-KALRN intergenic region and two SNPs in KALRN (rs17286604 and rs11712619) showed signiWcant (P < 0.05) allelic and genotypic (unadjusted and adjusted for hypertension, diabetes, and ever smoking) association with IS risk. Thirty-two imputed SNPs also showed an association at P < 0.05, and actual genotyping of Electronic supplementary material The online version of this article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.