Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects and morbidity in immunocompromised patients and a potential trigger for vascular disease. HCMV replicates in vascular endothelial cells and drives leukocyte-mediated viral dissemination through close endothelium-leukocyte interaction. However, the genetic basis of HCMV growth in endothelial cells and transfer to leukocytes is unknown. We show here that the UL131-128 gene locus of HCMV is indispensable for both productive infection of endothelial cells and transmission to leukocytes. The experimental evidence for this is based on both the loss-of-function phenotype in knockout mutants and natural variants and the gain-of-function phenotype by trans-complementation with individual UL131, UL130, and UL128 genes. Our findings suggest that a common mechanism of virus transfer may be involved in both endothelial cell tropism and leukocyte transfer and shed light on a crucial step in the pathogenesis of HCMV infection.
A panel of human sera exhibited a ¢128-fold higher neutralizing potency against a human cytomegalovirus (HCMV) clinical isolate propagated and tested in endothelial (or epithelial) cells than against the same virus infecting human fibroblasts. In a group of 18 primary infections, the reverse geometric mean titre was in the range of 10-15 in human fibroblasts within the first 3 months after the onset of infection, whereas the endothelial cell infection-neutralizing activity was already present within the first 10 days, reaching median levels of 122, 320 and 545 at respectively 30, 60 and 90 days after onset, then declining slowly. This difference was also confirmed in the majority of reactivated and remote HCMV infections, as well as in a hyperimmune globulin preparation. The antibody response to HCMV pUL131A, pUL130 and pUL128 locus products, which are required for endothelial/epithelial cell infection, provided a potential molecular basis for such a differential neutralizing activity. In addition, monoclonal/monospecific antibodies raised against the pUL131A, pUL130 and pUL128 proteins were found to display an inhibitory activity on HCMV plaque formation and HCMV leukocyte transfer from HCMV-infected cells. Hence, conventional determination of the neutralizing activity of human sera in fibroblasts is misleading. Antibodies to pUL131A, pUL130 and pUL128 appear to display a major HCMV-neutralizing and dissemination-inhibiting activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.