The Shimanto Belt in SW Japan is commonly described as a paleo-accretionary prism, whose structure is explained by continuous accretion like in modern accretionary prisms such as Nankai. We carried out a structural study of the Cretaceous to Miocene part of the Shimanto Belt on Kyushu to test this hypothesis of continuous accretion. Most deformation structures observed on the field are top-to-the-SE thrusts, fitting well the scheme of accretionary wedge growth by frontal accretion or underplating. In particular, the tectonic mélange at the top of the Hyuga Group records a penetrative deformation reflecting burial within the subduction channel. In contrast, we documented two stages of extension that require modifying the traditional model of the Belt as a "simple" giant accretionary wedge. The first one, in the early Middle Eocene, is mostly ductile and localized in the foliated bases of the Morotsuka and Kitagawa Groups. The second one, postdating the Middle Miocene, is a brittle deformation spread over the whole belt on Kyushu. Integrating these new tectonic features to existing data, we propose 2-D reconstructions of the belt evolution, leading to the following conclusions: (1) Erosion and extension of the margin in the early Middle Eocene resulted from the subduction of a trench-parallel ridge. (2) The Late Eocene to Early Miocene evolution is characterized by rapid growth of the prism, followed by a Middle Miocene stage where large displacements occurred along low-angle out-of-sequence thrusts such as the Nobeoka Tectonic Line. (3) From middle Miocene, the strain regime was extensional.
International audienceAccretionary prisms constitute ideal targets to study fluid circulation and fluid-rock interactions at depths beyond the reach of active margin deep drilling. The highest-grade rocks from the Shimanto Belt on Kyushu were buried under 3-5 kbars at ~ 300°C (Toriumi and Teruya, 1988). They contain abundant quartz veins, formed throughout burial and exhumation and variably affected by brittle and ductile deformation.Cathodoluminescence (CL) reveals the existence of two distinct types of quartz, characterized by a blue and brown color, respectively. CL-blue quartz fills macro-veins (width ≥ 10μm), while CL-brown quartz is present in micro-veins (width ~ 1 − 10μm) and ductilely recrystallized domains. On the basis of microstructures, the fluids associated with the CL-blue and CL-brown quartz are interpreted as “external” and “local”, respectively. Quartz growth rims of alternating CL colors as well as mutually cross-cutting veins show that the two fluids cyclically wetted the host rock.From fluid inclusions analysis, the fluid associated with CL-blue quartz has a salinity similar to seawater, while the fluid associated with CL-brown quartz is less saline. In addition, CL-blue quartz is richer in aluminum than the CL-brown one. In contrast to the salinity/aluminum signature, the δ18O isotopic signature of both quartz types is similar and buffered by host rock. The difference between the preservation of the salinity signature of the fluid and the loss of its δ18O signature is explained by quicker exchange kinetics and larger host rock buffering capacity for isotopic reequilibration.The “local” fluid, associated with CL-brown quartz, reflects the dilution of pore water by the pure water produced by prograde dehydration reactions of clay minerals. The “external” fluid associated with CL-blue quartz is interpreted as seawater or pore water from shallow (depth<1-2 km below seafloor) sediments. We propose that downward percolation of shallow water to depths ~ 10km is a transient process associated with mega-earthquakes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.