The macrophage migration inhibition factor (MIF) is a cytokine with multiple biological functions, including the cancer-associated processes, cell cycle deregulation, angiogenesis and metastatization. The present study investigated the expression of MIF and its functionally associated genes (D-DT, CD74, CD44, CXCR2 and CXCR4) in glioblastoma multiforme (GBM). The data were obtained from The Cancer Genome Atlas databank, through the cBioportal web-based utility (). A significant increase was observed in the majority of these genes in GBM samples compared with lower grade gliomas, however no significant correlation among the selected genes and the overall survival of the patients was identified. In contrast, the expression of MIF exhibited a trend toward an increase in overall survival and a significant increase of MIF expression was observed in samples of patients who underwent neoadjuvant treatment. In conclusion these data indicate that MIF and its receptors are involved in GBM progression and maintenance. Deciphering the precise biological significance in GBM would favor the adoption of tailored approaches to modulate the function of MIF and its associated genes for the treatment of the disease.
GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.
Guillain-Barré syndrome (GBS) is an immune-mediated acute disorder of the peripheral nervous system. Despite treatment, there is an associated mortality and severe disability in 9 to 17% of the cases. Decitabine (DAC) is a hypomethylating drug used in myelodisplastic syndrome, that has been shown to exert immunomodulatory effects. We have evaluated the effects of DAC in two rodent models of GBS, the Experimental Allergic Neuritis (EAN). Both prophylactic and therapeutic treatment with DAC ameliorated the clinical course of EAN, increasing the numbers of thymic regulatory T cells and reducing the production of proinflammmatory cytokines. Our data suggest the possible use of decitabine for the treatment of GBS.
Hepatic ischemia/reperfusion injury (IRI) is a clinical condition that may lead to cellular injury and organ dysfunction that can be observed in different conditions, such as trauma, shock, liver resection, and transplantation. Moderate levels of nitric oxide (NO) produced by the endothelial isoform of the NO synthase protect against liver IRI. GIT-27NO is a NO-derivative of the toll-like receptor 4 antagonist VGX-1027 that has been shown to possess both antineoplastic and immunomodulatory properties in vitro and in vivo. In this study, we have investigated the effects of this compound in vitro, in a model of oxidative stress induced in HepG2 cells by hydrogen peroxide (H2O2), and in vivo, in a rat model of IRI of the liver. GIT-27NO significantly counteracted the toxic effects induced by the H2O2 on the HepG2 cells and in vivo, GIT-27NO reduced the transaminase levels and the histological liver injury by reducing necrotic areas with preservation of viable tissue. These effects were almost similar to that of the positive control drug dimethyl fumarate. These data suggest that the beneficial effect of GIT-27NO in the hepatic IRI can be secondary to anti-oxidative effects and hepatocyte necrosis reduction probably mediated by NO release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.