The methodology provided is sufficiently detailed to offer a uniformly applied, pragmatic starting point and improve consistency and reproducibility in the measurement of TILs for future studies.
The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (
n
= 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naïve CD4
+
T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in different cancers.
Immune-checkpoint blockade (ICB) combined with neoadjuvant chemotherapy improves pathological complete response in breast cancer (BC). To understand why only a subset of tumors respond to ICB, patients with hormone receptor-positive or triple-negative BC were treated with anti-PD1 prior to surgery. Paired pre-versus on-treatment biopsies from treatment-naïve patients receiving anti-PD-1 (n=29) or patients receiving neoadjuvant chemotherapy prior to anti-PD1 (n=11) were subjected to single-cell transcriptome, T-cell receptor and proteome profiling. One-third of tumors contained PD1-expressing T-cells, which clonally expanded upon anti-PD1 treatment irrespective of tumor subtype. Expansion mainly involved CD8 + T-cells with pronounced expression of cytotoxic-activity (PRF1, GZMB), immune-cell homing (CXCL13) and exhaustion markers (HAVCR2, LAG3), and CD4 + T-cells characterized by expression of T-helper-1 (IFNG) and follicular-helper (BCL6, CXCR5) markers. In pre-treatment biopsies, the relative frequency of immunoregulatory dendritic cells (PD-L1), specific macrophage phenotypes (CCR2 or MMP9) and cancer cells exhibiting MHC class I/II expression correlated positively with T-cell expansion. Conversely, undifferentiated preeffector/memory T-cells (TCF7, GZMK) or inhibitory macrophages (CXCR3, C3) were inversely correlated. Collectively, our data identify various immunophenotypes and associated gene sets that are positively or negatively correlated with T-cell expansion following anti-PD1. We shed light on the heterogeneity in treatment response to anti-PD1 in breast cancer.
Assessment of tumor infiltrating lymphocytes (TILs) in histopathological specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible and reliable immuno-oncology biomarkers is clear. In Part 1 of this review we briefly discuss the host immune response to tumors and different approaches to TIL assessment. We propose a standardized methodology to assess TILs in solid tumors on H&E sections, in both primary and metastatic settings, based on the International Immuno-Oncology Biomarker Working Group guidelines for TIL assessment in invasive breast carcinoma. A review of the literature regarding the value of TIL assessment in different solid tumor types follows in Part 2. The method we propose is reproducible, affordable, easily applied, and has demonstrated prognostic and predictive significance in invasive breast carcinoma. This standardized methodology may be used as a reference against which other methods are compared, and should be evaluated for clinical validity and utility. Standardization of TIL assessment will help to improve consistency and reproducibility in this field, enrich both the quality and quantity of comparable evidence, and help to thoroughly evaluate the utility of TILs assessment in this era of immunotherapy.
Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecological system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.