Abstract-We evaluated the healing potential of human fetal aorta-derived CD133ϩ progenitor cells and their conditioned medium (CD133 ϩ CCM) in a new model of ischemic diabetic ulcer. Streptozotocin-induced diabetic mice underwent bilateral limb ischemia and wounding. One wound was covered with collagen containing 2ϫ10 4 CD133 ϩ or CD133 Ϫ cells or vehicle. The contralateral wound, covered with only collagen, served as control. Fetal CD133 ϩ cells expressed high levels of wingless (Wnt) genes, which were downregulated following differentiation into CD133Ϫ cells along with upregulation of Wnt antagonists secreted frizzled-related protein (sFRP)-1, -3, and -4. CD133ϩ cells accelerated wound closure as compared with CD133Ϫ or vehicle and promoted angiogenesis through stimulation of endothelial cell proliferation, migration, and survival by paracrine effects. CD133ϩ cells secreted high levels of vascular endothelial growth factor (VEGF)-A and interleukin (IL)-8. Consistently, CD133ϩ CCM accelerated wound closure and reparative angiogenesis, with this action abrogated by coadministering the Wnt antagonist sFRP-1 or neutralizing antibodies against VEGF-A or IL-8. In vitro, these effects were recapitulated following exposure of high-glucose-primed human umbilical vein endothelial cells to CD133 ϩ CCM, resulting in stimulation of migration, angiogenesis-like network formation and induction of Wnt expression. The promigratory and proangiogenic effect of CD133 ϩ CCM was blunted by sFRP-1, as well as antibodies against VEGF-A or IL-8. Key Words: ischemia Ⅲ wound healing Ⅲ diabetes Ⅲ stem cells Ⅲ angiogenesis C hronic wounds represent a relevant clinical and socioeconomic burden, with diabetic foot ulcers alone causing costs of 300 million pounds per annum to the United Kingdom National Health System. 1 Diabetic patients with foot ulcers associated with peripheral vascular disease manifest the worst outcome, with higher amputation and mortality rates than patients carrying nonischemic ulcers. 2,3 Although the efficacy of a topical gel formulation of recombinant human platelet-derived growth factor-BB was recently demonstrated in patients with nonischemic neuropathic ulcers, 4 most ischemic ulcers are refractory to conventional treatment and growth factor (GF) therapy. 5 Therefore, new strategies for the cure of life-threatening ischemic ulcers are urgently awaited.Preliminary evidence supports the potential of adult or fetal stem/progenitor cells for the healing of skin ulcers. 6 -8 However, because of the lack of an appropriate preclinical model, no information is available regarding the effectiveness of cell therapy on ischemic diabetic foot ulcers. The healing activity of stem cells is credited to their ability to transdifferentiate into the vascular and nonvascular components of injured tissue, as well as to secretion of GFs, which may activate endogenous modulators of angiogenesis in the recipient. 9 -11 Notably, fetal stem cells show significant advantages over their adult counterparts in terms of proliferative capa...
Objective-The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis. Methods and Results-We found profound structural alterations in BM from mice with type 1 diabetes with depletion of the hematopoietic component and fatty degeneration. Blood flow (fluorescent microspheres) and microvascular density (immunohistochemistry) were remarkably reduced. Flow cytometry verified the depletion of MECA-32 ϩ endothelial cells. Cultured endothelial cells from BM of diabetic mice showed higher levels of oxidative stress, increased activity of the senescence marker -galactosidase, reduced migratory and network-formation capacities, and increased permeability and adhesiveness to BM mononuclear cells. Flow cytometry analysis of lineage Ϫ c-Kit ϩ Sca-1 ϩ cell distribution along an in vivo Hoechst-33342 dye perfusion gradient documented that diabetes depletes lineage Ϫ c-Kit ϩ Sca-1 ϩ cells predominantly in the low-perfused part of the marrow. Cell depletion was associated to increased oxidative stress, DNA damage, and activation of apoptosis. Boosting the antioxidative pentose phosphate pathway by benfotiamine supplementation prevented microangiopathy, hypoperfusion, and lineage Ϫ c-Kit ϩ Sca-1 ϩ cell depletion. Conclusion-We provide novel evidence for the presence of microangiopathy impinging on the integrity of diabetic BM.These discoveries offer the framework for mechanistic solutions of BM dysfunction in diabetes. (Arterioscler Thromb Vasc Biol. 2010;30:498-508.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.