The International Society of Urological Pathology 2012 Consensus Conference made recommendations regarding classification, prognostic factors, staging, and immunohistochemical and molecular assessment of adult renal tumors. Issues relating to prognostic factors were coordinated by a workgroup who identified tumor morphotype, sarcomatoid/rhabdoid differentiation, tumor necrosis, grading, and microvascular invasion as potential prognostic parameters. There was consensus that the main morphotypes of renal cell carcinoma (RCC) were of prognostic significance, that subtyping of papillary RCC (types 1 and 2) provided additional prognostic information, and that clear cell tubulopapillary RCC was associated with a more favorable outcome. For tumors showing sarcomatoid or rhabdoid differentiation, there was consensus that a minimum proportion of tumor was not required for diagnostic purposes. It was also agreed upon that the underlying subtype of carcinoma should be reported. For sarcomatoid carcinoma, it was further agreed upon that if the underlying carcinoma subtype was absent the tumor should be classified as a grade 4 unclassified carcinoma with a sarcomatoid component. Tumor necrosis was considered to have prognostic significance, with assessment based on macroscopic and microscopic examination of the tumor. It was recommended that for clear cell RCC the amount of necrosis should be quantified. There was consensus that nucleolar prominence defined grades 1 to 3 of clear cell and papillary RCCs, whereas extreme nuclear pleomorphism or sarcomatoid and/or rhabdoid differentiation defined grade 4 tumors. It was agreed upon that chromophobe RCC should not be graded. There was consensus that microvascular invasion should not be included as a staging criterion for RCC.
This study aimed to investigate the microRNA (miRNA) profile in prostate carcinoma tissue by microarray analysis and RT-qPCR, to clarify associations of miRNA expression with clinicopathologic data and to evaluate the potential of miRNAs as diagnostic and prognostic markers. Matched tumor and adjacent normal tissues were obtained from 76 radical prostatectomy specimens. Twenty-four tissue pairs were analyzed using human miRNA microarrays for 470 human miRNAs. Differentially expressed miRNAs were validated by TaqMan RT-qPCR using all 76 tissue pairs. The diagnostic potential of miRNAs was calculated by receiver operating characteristics analyses. The prognostic value was assessed in terms of biochemical recurrence using Kaplan-Meier and Cox regression analyses. Fifteen differentially expressed miRNAs were identified with concordant fold-changes by microarray and RT-qPCR analyses. Ten microRNAs (hsa-miR-16, hsa-miR-31, hsa-miR-125b, hsamiR-145, hsa-miR-149, hsa-miR-181b, hsa-miR-184, hsa-miR-205, hsa-miR-221, hsa-miR-222) were downregulated and 5 miRNAs (hsa-miR-96, hsa-miR-182, hsa-miR-182*, hsa-miR-183, hsa-375) were upregulated. Expression of 5 miRNAs correlated with Gleason score or pathological tumor stage. Already 2 microRNAs classified up to 84% of malignant and nonmalignant samples correctly. Expression of hsa-miR-96 was associated with cancer recurrence after radical prostatectomy and that prognostic information was confirmed by an independent tumor sample set from 79 patients. That was shown with hsa-miR-96 and the Gleason score as final variables in the Cox models build in the 2 patient sets investigated. Thus, differential miRNAs in prostate cancer are useful diagnostic and prognostic indicators. This study provides a solid basis for further functional analyses of miRNAs in prostate cancer.
2020. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology 21 (2) , pp. 222-232.
High activity of histone deacetylases (HDACs) causes epigenetic alterations associated with malignant cell behaviour. Consequently, HDAC inhibitors have entered late-phase clinical trials as new antineoplastic drugs. However, little is known about expression and function of specific HDAC isoforms in human tumours including prostate cancer. We investigated the expression of class I HDACs in 192 prostate carcinomas by immunohistochemistry and correlated our findings to clinicopathological parameters including follow-up data. Class I HDAC isoforms were strongly expressed in the majority of the cases (HDAC1: 69.8%, HDAC2: 74%, HDAC3: 94.8%). High rates of HDAC1 and HDAC2 expression were significantly associated with tumour dedifferentiation. Strong expression of all HDACs was accompanied by enhanced tumour cell proliferation. In addition, HDAC2 was an independent prognostic marker in our prostate cancer cohort. In conclusion, we showed that the known effects of HDACs on differentiation and proliferation of cancer cells observed in vitro can also be confirmed in vivo. The class I HDAC isoforms 1, 2 and 3 are differentially expressed in prostate cancer, which might be important for upcoming studies on HDAC inhibitors in this tumour entity. Also, the highly significant prognostic value of HDAC2 clearly deserves further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.