Platelets are relatively short-lived, anucleated cells that are essential for proper hemostasis. The regulation of platelet survival in the circulation remains poorly understood. The process of platelet activation and senescence in vivo is associated with processes similar to those observed during apoptosis in nucleated cells, including loss of mitochondrial membrane potential, caspase activation, phosphatidylserine (PS) externalization, and cell shrinkage. ABT-737, a potent antagonist of Bcl-2, Bcl-X L , and Bcl-w, induces apoptosis in nucleated cells dependent on these proteins for survival. In vivo, ABT-737 induces a reduction of circulating platelets that is maintained during drug therapy, followed by recovery to normal levels within several days after treatment cessation. Whole body scintography utilizing [111] Indium-labeled platelets in dogs shows that ABT-737-induced platelet clearance is primarily mediated by the liver. In vitro, ABT-737 treatment leads to activation of key apoptotic processes including cytochrome c release, caspase-3 activation, and PS externalization in isolated platelets. Despite these changes, ABT-737 is ineffective in promoting platelet activation as measured by granule release markers and platelet aggregation. Taken together, these data suggest that ABT-737 induces an apoptosis-like response in platelets that is distinct from platelet activation and results in enhanced clearance in vivo by the reticuloendothelial system.
Background and purpose: Inhibition of bradykinin metabolizing enzymes (BMEs) can cause acute angioedema, as demonstrated in a recent clinical trial in patients administered the antihypertensive, omapatrilat. However, the relative contribution of specific BMEs to this effect is unclear and confounded by the lack of a predictive pre-clinical model of angioedema. Experimental approach: Rats were instrumented to record blood pressure and heart rate; inhibitors were infused for 35 min and bradykinin was infused during the last 5 min to elicit hypotension, as a functional marker of circulating bradykinin and relative angioedema risk. Key results: In the presence of omapatrilat bradykinin produced dose-dependent hypotension, an effect abolished by B 2 blockade. In the presence of lisinopril (ACE inhibitor), but not candoxatril (NEP inhibitor) or apstatin (APP inhibitor), bradykinin also elicited hypotension. Lisinopril-mediated hypotension was unchanged with concomitant blockade of NEP or NEP/DPPIV (candoxatril þ A-899301). However, hypotension was enhanced upon concomitant blockade of APP and further intensified in the presence of NEP inhibition to values not different from omapatrilat alone. Conclusions and implications:We demonstrated that bradykinin is degraded in vivo with an enzyme rank-efficacy of ACE4APPcNEP or DPPIV. These results suggest the effects of omapatrilat are mediated by inhibition of three BMEs, ACE/APP/ NEP. However, dual inhibition of ACE/NEP or ACE/NEP/DPPIV elicits no increased risk of angioedema compared to ACE inhibition alone. Thus, novel BME inhibitors must display no activity against APP to avoid angioedema risk due to high prevalence of ACE inhibitor therapy in patients with diabetes and cardiovascular disease.
Although obesity is a major risk factor for morbidity and mortality, the mechanisms mediating cardiovascular abnormalities in response to weight gain are unclear. One reason for the paucity of information in this area is the lack of appropriate animal models for the study of human obesity. Therefore, the goal of the present study was to develop a small animal model of dietary-induced obesity that mimics many of the characteristics of human obesity. We studied female New Zealand White rabbits fed either a normal (n = 17) or high-fat diet (n = 15) and examined the cardiovascular consequences of obesity, including changes in blood pressure, humoral activation, and end-organ effects such as cardiac hypertrophy. After 12 wk, rabbits on the high-fat diet were 46% heavier than their lean counterparts (5.49 +/- 0.09 vs. 3.77 +/- 0.06 kg, respectively; P = 0.0001). Obese rabbits had higher resting heart rates than lean rabbits (220 +/- 7 vs. 177 +/- 6 beats/min; P = 0.0001) and developed hypertension (96 +/- 2 vs. 85 +/- 1 mmHg; P = 0.0001), hyperinsulinemia (32.5 +/- 3.4 vs. 15.5 +/- 1.0 microU/ml; P = 0.0001), hyperglycemia (162.4 +/- 2.9 vs. 141.9 +/- 2.7 mg/dl; P = 0.0001), and elevated triglycerides (102.3 +/- 9.1 vs. 48.5 +/- 4.0 mg/dl; P = 0.0001). Obese rabbits also developed cardiac hypertrophy, as evidenced by left ventricular (LV) dry weights that were 52% greater in obese than in lean rabbits (P = 0.0003). In addition, LV total protein was increased in proportion to the increase in LV weight. The results of this study suggest that rabbits fed a high-fat diet for a period of 12 wk develop many of the characteristics of human obesity. The obese rabbit should provide a small and relatively inexpensive animal model to investigate mechanisms of obesity-related cardiovascular abnormalities.
Vascular calcification is a mortality risk factor for stage 5 chronic kidney disease patients. We investigated the role of phosphorus and vitamin D analogs in the pathogenesis of vascular calcification using in vivo, ex vivo, and in vitro models. Our results demonstrate that uremic rats receiving a hyperphosphatemia-inducing diet did not exhibit aortic calcification despite elevated levels of serum phosphorus and calciumphosphorus (CaxP) product. The vitamin D analog 1␣-hydroxyvitamin-D 2 [1␣(OH)D 2 ] at 0.17 g/kg raised serum calcium, phosphorus, CaxP product, and aortic calcification in the uremic rats, but 19-nor-1␣,25(OH) 2 D 2 (19-nor) at the same dose had no significant effect. At 0.67 g/kg, both 1␣(OH)D 2 and 19-nor had similar effects on serum calcium, phosphorus, and CaxP product, but only 1␣(OH)D 2 induced significant aortic calcification. Only aortic rings from 1␣(OH)D 2 -treated uremic rats exhibited a significant increase in 45 Ca uptake ex vivo. When aortic rings from normal rats or a primary culture of human coronary artery smooth muscle cells were treated with phosphorus or vitamin D analogs in vitro, high phosphorus induced calcium accumulation and/or 45 Ca uptake in a dose-or time-dependent manner, whereas vitamin D analogs including 1␣(OH)D 2 up to 100 nM had no significant effect despite the presence of a functional vitamin D receptor. However, serum from 1␣(OH)D 2 -treated uremic rats induced 45 Ca uptake into smooth muscle cells cultured in high phosphorus. These results suggest that the regulation of vascular calcification in vivo cannot be easily replicated in the ex vivo or in vitro models, and high phosphorus and some vitamin D analogs such as 1␣(OH)D 2 exert interactive effects on modulating vascular calcification.
Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1PX receptor agonist) produces modest hypertension in patients (2–3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.g. bradycardia, hypertension), and perhaps even species-dependent since functional differences in rodent, rabbit, and human have been suggested. Thus, we characterized the S1P receptor subtype specificity for each compound in vitro and, in vivo, the cardiovascular effects of FTY720 and the more selective S1P1,5 agonist, BAF312, were tested during acute i.v. infusion in anesthetized rats and after oral administration for 10 days in telemetry-instrumented conscious rats. Acute i.v. infusion of FTY720 (0.1, 0.3, 1.0 mg/kg/20 min) or BAF312 (0.5, 1.5, 5.0 mg/kg/20 min) elicited acute bradycardia in anesthetized rats demonstrating an S1P1 mediated mechanism-of-action. However, while FTY720 (0.5, 1.5, 5.0 mg/kg/d) elicited dose-dependent hypertension after multiple days of oral administration in rat at clinically relevant plasma concentrations (24-hr mean blood pressure = 8.4, 12.8, 16.2 mmHg above baseline vs. 3 mmHg in vehicle controls), BAF312 (0.3, 3.0, 30.0 mg/kg/d) had no significant effect on blood pressure at any dose tested suggesting that hypertension produced by FTY720 is mediated S1P3 receptors. In summary, in vitro selectivity results in combination with studies performed in anesthetized and conscious rats administered two clinically tested S1P agonists, FTY720 or BAF312, suggest that S1P1 receptors mediate bradycardia while hypertension is mediated by S1P3 receptor activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.