[1] The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued
A field-widened Michelson interferometer designed to measure upper atmospheric winds at three altitudes near the mesopause by using airglow emissions from O(1)S, OH, and O(2) is described. A very large path difference (11 cm) is used to suppress the fringes from the hot F-region emission of O(1)S and to facilitate accurate measurements. Field widening and thermal compensation are achieved over the large spectral range (557.7-866.0 nm) by the use of three types of glass in the interferometer's arms. The instrument was installed at Resolute Bay, Canada (74.3 N, 94.5 W), in November 1992 and has been operated remotely from Toronto for four winter seasons. Some examples of data are shown to illustrate ERWIN's performance.
The detection and processing of laser communication signals are affected by the fading induced onto these signals by atmospheric turbulence. One method of reducing this fading is to use an array of detectors in which each of the detector outputs are added together coherently. We present experimental verification and theory of a 1.06 mum eight-element coherent receiver used to mitigate the effects of fading over a 1-km outdoor range. The carrier-to-noise ratio (CNR) was measured on a single channel and was then compared with the CNR obtained from the coherent sum of the eight channels. The increase of the mean CNR for the coherent sum as compared with a single aperture was observed proportional to the number of the apertures under different conditions of atmospheric turbulence. The measured mean CNR gain fitted the theoretical prediction well when the laser intensity fluctuations followed the gamma distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.