In this work, zeolite (Z) and Z-Fe3O4 nanocomposite (Z-Fe3O4 NC) have been synthesized. The Fe3O4 nanoparticles were synthesized using the extract from maize leaves and ferric and ferrous chloride salts and encapsulated into the zeolite framework. The nanocomposite (Z-Fe3O4 NC) was characterized using X-ray diffractometer (XRD), Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The potential of Z-Fe3O4 NC as an adsorbent for removing methylene blue molecules (MB) from solution was examined using UV-Vis and kinetic and equilibrium isotherm models. The adsorption data fitted best with the pseudo-second-order model and Weber and Morris model, indicating that the adsorption process was chemisorption, while the Weber and Morris described the rate-controlling steps. The intraparticle diffusion model suggests that the adsorption processes were pore and surface diffusion controlled. The Langmuir isotherm model best describes the adsorption process indicating homogeneous monolayer coverage of MB molecules onto the surface of the Z-Fe3O4 NC. The maximum Langmuir adsorption capacity was 2.57 mg/g at 25°C. The maximum adsorption efficiency was 97.5%. After regeneration, the maximum adsorption efficiency achieved at a pH of 7 was 82.6%.
This work reports the isolation and characterization of chitin from green algae using XRD, 13C CP/MAS NMR, FTIR and Microscopy. The XRD diffraction pattern confirmed orthorhombic structure of the crystalline polysaccharide, whereas the FTIR spectra revealed strong absorption bands at 896.9 cm-1 and 852 cm-1 typical of C–H axial and C–H equatorial vibrations within the anomeric center of the glucopyranosicyclic moiety. Another strong absorption band was observed at 1039.9 cm-1 and was assigned to C–O–C, C–O stretching bands. The purity and structure of the deacetylated chitin was confirmed using 13C NMR, showing overlapping peaks around 65 ppm assigned to both the sugar carbon at C2, as well as a methylene carbon at C6. An intense peak at 74 ppm is assigned to C3 and C5 with corresponding resonances at 81 and 104 ppm assigned to C4 and C1 respectively. Zeolite/Chitosan nanocomposites were synthesized by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles and LTA of different concentrations were incubated with HeLa cancer cells to investigate their cytotoxicity effects. The exposure of the cells to chitosan nanoparticles resulted in a decreased in cell growth and this was concentration-dependent. Our results revealed the utility of locally available materials to produce new biodegradable nanoparticles to investigate their biological nanotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.