The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre‐restoration, and post‐restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre‐ to post‐restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre‐restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post‐restoration. The presence of salmon in restored tidal channels confirmed rapid post‐restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.
Hatchery programs have been used as a conservation tool to bolster declining populations of Chinook Salmon Oncorhynchus tshawytscha along much of the North American Pacific coast. In many watersheds, hatchery stocks are released concurrently with the wild population, thus raising the potential for density‐dependent effects. Competition for prey resources during the critical period for early marine growth and survival may diminish the foraging capacity and growth potential of wild Chinook Salmon, highlighting the importance of a diverse and productive delta habitat mosaic. We used an integrated diet approach with stomach content and stable isotope analyses to evaluate contrasting patterns of habitat use and prey consumption in a fall‐run population of juvenile Chinook Salmon from the Nisqually River delta in Puget Sound, Washington. We examined size‐class and origin‐level differences throughout a gradient of delta habitat types. Wild (unmarked) and hatchery juveniles exhibited distinct habitat use patterns whereby unmarked fish were captured more frequently in tidally influenced freshwater and mesohaline emergent marsh areas, while hatchery fish were caught more often in the nearshore intertidal zone. Consequently, hatchery fish were less likely to consume the energy‐dense terrestrial insects that were more common in freshwater and brackish marshes. Stable isotope signatures from muscle and liver tissues corroborated this finding, showing that unmarked juveniles had derived 24–31% of their diets from terrestrially sourced prey, while terrestrial insects only made up 2–8% of hatchery fish diets. This may explain why unmarked fish were in better condition than hatchery fish and had stomach contents that were 15% more energy‐rich than those of hatchery fish. We did not observe strong evidence for trophic overlap in juvenile Chinook Salmon of different rearing origins, but our results suggest that hatchery juveniles could be more sensitive to diet‐mediated effects on growth and survival.
Few comparisons exist between vertical accretion (VA) and carbon accumulation rates (CARs) in restored versus historic (i.e. reference) marshes. Here, we compare these processes in a formerly diked, sparsely vegetated, restored salt marsh (Six Gill Slough, SG), whose surface is subsided relative to the tidal frame, to an adjacent, relatively pristine, historic salt marsh (Animal Slough, AS). Six sediment cores were collected at both AS and SG approximately 6 years after restoration. Cores were analyzed for bulk density (BD), % loss of ignition, % organic carbon, and 210Pb. We found that sharp changes in BD in surface layers of SG cores were highly reliable markers for the onset of restoration. The mean VA since restoration at SG (0.79 [SD = 0.29] cm/year) was approximately twice that of AS (0.41 [SD = 0.16] cm/year). In comparison, the VA at AS over 50 years was 0.30 (SD = 0.09) cm/year. VA consisted almost entirely of inorganic sediment at SG whereas at AS it was approximately 55%. Mean CARs at SG were somewhat greater than at AS, but the difference was not significant due to high variability (SG: 81–210 g C m−2 year−1; AS: 115–168 g C m−2 year−1). The mean CAR at AS over the past 50 years was 118 (SD = 23) g C m−2 year−1. This study demonstrates that a sparsely vegetated, restored salt marsh can quickly begin to accumulate carbon and that historic and restored marshes can have similar CARs despite highly divergent formation processes.
Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out‐migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3‐fold between 1 and 3 years post‐restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary‐dependent wildlife.
Large river deltas are complex ecosystems that are believed to play a pivotal role in promoting the early marine growth and survival of threatened Chinook Salmon Oncorhynchus tshawytscha. We used a fish bioenergetics model to assess the functional role of multiple delta habitats across a gradient of salinities and vegetation types, where consumption and growth rate potential (GRP) were considered as proxies for habitat quality. We subsequently compared our model output to empirical, or realized, growth estimates from scale circuli. In terms of consumption, prey energy density (EDprey) was 46–86% higher in tidal freshwater forest than in any other habitat type, while estimated consumption rates (expressed as proportion of maximum daily consumption; Pcmax) were positively correlated with FL. These size‐related differences in Pcmax led to a noticeable increase along a freshwater‐to‐saline gradient from roughly 0.25 in tidal freshwater forest to 0.55 in the offshore subtidal zone, yet despite higher observed Pcmax values in nearshore and offshore habitats, the tidal freshwater forest and emergent salt marsh demonstrated the highest modeled GRP values. Similarly, realized growth rates for fish caught in tidal freshwater forest were up to 0.5% higher per day than for fish caught in the offshore area, but habitat‐level differences were overshadowed by allometry and rearing origin. Scales from unmarked fish (assumed to be of wild origin) indicated that they grew, on average, 11% faster than did hatchery fish; however, these differences were subtle and were more obvious at fork lengths <100 mm. Our results suggest that tidal forests and emergent marshes may offer early life growth advantages for wild Chinook Salmon, but that wild and hatchery fish can compensate as they move seaward by opportunistically consuming greater quantities of low‐energy density prey, taking advantage of pulses of larval forage fish, or by spending time in multiple interconnected habitat types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.