Background
It is widely believed that females have longer telomeres than males, although results from studies have been contradictory.
Methods
We carried out a systematic review and meta-analyses to test the hypothesis that in humans, females have longer telomeres than males and that this association becomes stronger with increasing age. Searches were conducted in EMBASE and MEDLINE (by November 2009) and additional datasets were obtained from study investigators. Eligible observational studies measured telomeres for both females and males of any age, had a minimum sample size of 100 and included participants not part of a diseased group. We calculated summary estimates using random-effects meta-analyses. Heterogeneity between studies was investigated using sub-group analysis and meta-regression.
Results
Meta-analyses from 36 cohorts (36,230 participants) showed that on average females had longer telomeres than males (standardised difference in telomere length between females and males 0.090, 95% CI 0.015, 0.166; age-adjusted). There was little evidence that these associations varied by age group (p = 1.00) or cell type (p = 0.29). However, the size of this difference did vary by measurement methods, with only Southern blot but neither real-time PCR nor Flow-FISH showing a significant difference. This difference was not associated with random measurement error.
Conclusions
Telomere length is longer in females than males, although this difference was not universally found in studies that did not use Southern blot methods. Further research on explanations for the methodological differences is required.
The p63 gene encodes at least six different proteins with homology to the tumour suppressor protein p53 and the related p53 family member p73. So far, there have been limited data concerning the expression patterns of individual p63 proteins, due to a lack of reagents that distinguish between the different isoforms. Three antibodies have been produced specifically directed against the two N-terminal isoforms (TAp63 and DeltaNp63) and the C-terminal region of the p63alpha proteins. TAp63 proteins are located suprabasally in stratified epithelia compared with the N-terminal truncated forms, which are more abundantly expressed in the basal cell layer, indicating a switch in expression of p63 isoforms during normal cellular differentiation. Analysis of squamous cell carcinomas shows DeltaNp63alpha to be the most widely expressed isoform, compatible with a role for this protein in promoting neoplastic cell growth in these tissues. DeltaNp63 protein expression is also restricted to basal cells in breast and prostate, whilst TAp63 isoforms are more widely expressed in these tissues as well as in tumours at these sites. TAp63, but not DeltaNp63 or p63alpha, is detected in normal colon and in colon carcinoma. TAp63 proteins are also expressed in the nuclei of a sub-population of lymphoid cells and in most malignant lymphomas, whereas DeltaNp63 proteins are not expressed. Taken together, a hitherto unrecognized regulation of p63 isoform expression in vivo has been uncovered, with different p63 proteins expressed during differentiation and in different cell types. The data indicate roles for specific p63 isoforms not only in maintaining epithelial stem cell populations, but also in cellular differentiation and neoplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.