In contrast to animal and fungal cells, green plant cells contain one or multiple chloroplasts, the organelle(s) in which photosynthetic reactions take place. Chloroplasts are believed to have originated from an endosymbiotic event and contain DNA that codes for some of their proteins. Most chloroplast proteins are encoded by the nuclear genome and imported with the help of sorting signals that are intrinsic parts of the polypeptides. Here, we show that a chloroplast-located protein in higher plants takes an alternative route through the secretory pathway, and becomes N-glycosylated before entering the chloroplast.
Glutaredoxins (Grxs) are small ubiquitous proteins of the thioredoxin (Trx) family, which catalyze dithiol-disulfide exchange reactions or reduce protein-mixed glutathione disulfides. In plants, several Trx-interacting proteins have been isolated from different compartments, whereas very few Grx-interacting proteins are known. We describe here the determination of Grx target proteins using a mutated poplar Grx, various tissular and subcellular plant extracts, and liquid chromatography coupled to tandem mass spectrometry detection. We have identified 94 putative targets, involved in many processes, including oxidative stress response [peroxiredoxins (Prxs), ascorbate peroxidase, catalase], nitrogen, sulfur, and carbon metabolisms (methionine synthase, alanine aminotransferase, phosphoglycerate kinase), translation (elongation factors E and Tu), or protein folding (heat shock protein 70). Some of these proteins were previously found to interact with Trx or to be glutathiolated in other organisms, but others could be more specific partners of Grx. To substantiate further these data, Grx was shown to support catalysis of the stroma beta-type carbonic anhydrase and Prx IIF of Arabidopsis thaliana, but not of poplar 2-Cys Prx. Overall, these data suggest that the interaction could occur randomly either with exposed cysteinyl disulfide bonds formed within or between target proteins or with mixed disulfides between a protein thiol and glutathione.
In situ amendment of contaminated sediments using activated carbon (AC) is a recent remediation technique, where the strong sorption of contaminants to added AC reduces their release from sediments and uptake into organisms. The current study describes a marine underwater field pilot study in Trondheim harbor, Norway, in which powdered AC alone or in combination with sand or clay was tested as a thin-layer capping material for polycyclic aromatic hydrocarbon (PAH)-contaminated sediment. Several novel elements were included, such as measuring PAH fluxes, no active mixing of AC into the sediment, and the testing of new manners of placing a thin AC cap on sediment, such as AC+clay and AC+sand combinations. Innovative chemical and biological monitoring methods were deployed to test capping effectiveness. In situ sediment-to-water PAH fluxes were measured using recently developed benthic flux chambers. Compared to the reference field, AC capping reduced fluxes by a factor of 2-10. Pore water PAH concentration profiles were measured in situ using a new passive sampler technique, and yielded a reduction factor of 2-3 compared to the reference field. The benthic macrofauna composition and biodiversity were affected by the AC amendments, AC + clay having a lower impact on the benthic taxa than AC-only or AC + sand. In addition, AC + clay gave the highest AC recoveries (60% vs 30% for AC-only and AC + sand) and strongest reductions in sediment-to-water PAH fluxes and porewater concentrations. Thus, application of an AC-clay mixture is recommended as the optimal choice of the currently tested thin-layer capping methods for PAHs, and more research on optimizing its implementation is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.