Nonionic alkyl ethoxylates (C(n)E(m)) have been extensively studied for their adsorption, aggregation, and solubilization individually and in small groups. In this work, we report a more systematic study of the effects of alkyl chain (tail) and ethoxylate (head) length on the size, shape, and extent of intermixing within the C(n)E(m) micelles in aqueous solution. Data from small angle neutron scattering (SANS) and nuclear magnetic resonance (NMR) were combined to undertake the structural characterization of micelles formed from the two separate series of surfactants C(n)E6 (n = 10, 12, 14) and C12E(m) (m = 5, 6, 8, 10, 12). The micellar core volume (V(core)) could be well determined with reasonable accuracy and linked to the hydrophilic-lipophilic balance (HLB) of the surfactant, with a sharp size and shape transition occurring around HLB = 12.5. NOESY NMR results revealed protrusions of the terminal methylene groups into the ethoxylate shell, thus providing direct experimental evidence for the phenomenon of "roughness" or intermixing of the core-shell interface. These detailed studies are compared with previous investigations on this model surfactant system.
Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid–liquid and solid–air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops.
A novel approach of photoinduced phase separation has been demonstrated with a photolabile anionic surfactant, mixed with an inert nonionic surfactant in the presence of salting-out electrolyte. Breakdown of the photolyzable surfactant results in hydrophobic photoproducts, which are emulsified by the remaining inert surfactant; added electrolyte resolves the emulsion into macroscopic oily and aqueous phases. The initial micellar systems can disperse an insoluble additive marker dye (shown), which may be spatially segregated from the aqueous environment by the action of UV light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.