BackgroundEvidence from animal models shows that tissue stiffness increases the invasion and progression of cancers, including mammary cancer. We here use measurements of the volume and the projected area of the compressed breast during mammography to derive estimates of breast tissue stiffness and examine the relationship of stiffness to risk of breast cancer.MethodsMammograms were used to measure the volume and projected areas of total and radiologically dense breast tissue in the unaffected breasts of 362 women with newly diagnosed breast cancer (cases) and 656 women of the same age who did not have breast cancer (controls). Measures of breast tissue volume and the projected area of the compressed breast during mammography were used to calculate the deformation of the breast during compression and, with the recorded compression force, to estimate the stiffness of breast tissue. Stiffness was compared in cases and controls, and associations with breast cancer risk examined after adjustment for other risk factors.ResultsAfter adjustment for percent mammographic density by area measurements, and other risk factors, our estimate of breast tissue stiffness was significantly associated with breast cancer (odds ratio = 1.21, 95% confidence interval = 1.03, 1.43, p = 0.02) and improved breast cancer risk prediction in models with percent mammographic density, by both area and volume measurements.ConclusionAn estimate of breast tissue stiffness was associated with breast cancer risk and improved risk prediction based on mammographic measures and other risk factors. Stiffness may provide an additional mechanism by which breast tissue composition is associated with risk of breast cancer and merits examination using more direct methods of measurement.
A method is described for the quantitative volumetric analysis of the mammographic density ͑VBD͒ from digitized screen-film mammograms. The method is based on initial calibration of the imaging system with a tissue-equivalent plastic device and the subsequent correction for variations in exposure factors and film processing characteristics through images of an aluminum step wedge placed adjacent to the breast during imaging. From information about the compressed breast thickness and technique factors used for taking the mammogram as well as the information from the calibration device, VBD is calculated. First, optical sensitometry is used to convert images to Log relative exposure. Second, the images are corrected for x-ray field inhomogeneity using a spherical section PMMA phantom image. The effectiveness of using the aluminum step wedge in tracking down the variations in exposure factors and film processing was tested by taking test images of the calibration device, aluminum step wedge and known density phantoms at various exposure conditions and also at different times over one year. Results obtained on known density phantoms show that VBD can be estimated to within 5% accuracy from the actual value. A first order thickness correction is employed to correct for inaccuracy in the compression thickness indicator of the mammography units. Clinical studies are ongoing to evaluate whether VBD can be a better indicator for breast cancer risk.
Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and on the receptor type. In most cases, the AECs of the FFDM systems successfully identified exposure parameters resulting in FOM values near the maximum ones, however, there were several examples where AEC performance could be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.