Harnessing molecular motion to reversibly control macroscopic properties, such as shape and size, is a fascinating and challenging subject in materials science. Here we design a crystalline cobalt(II) complex with an n-butyl group on its ligands, which exhibits a reversible crystal deformation at a structural phase transition temperature. In the low-temperature phase, the molecular motion of the n-butyl group freezes. On heating, the n-butyl group rotates ca. 100° around the C–C bond resulting in 6–7% expansion of the crystal size along the molecular packing direction. Importantly, crystal deformation is repeatedly observed without breaking the single-crystal state even though the shape change is considerable. Detailed structural analysis allows us to elucidate the underlying mechanism of this deformation. This work may mark a step towards converting the alkyl rotation to the macroscopic deformation in crystalline solids.
Ten types of neutral charge transfer (CT) complexes of coronene (electron donor; D) were obtained with various electron acceptors (A). In addition to the reported 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex of 1:1 stoichiometry with a DA-type alternating π column, TCNQ also afforded a 3:1 complex, in which a face-to-face dimer of parallel coronenes (Cor-As) is sandwiched between TCNQs to construct a DDA-type alternating π column flanked by another coronene (Cor-B). Whereas solid-state (2)H NMR spectra of the 1:1 TCNQ complex formed with deuterated coronene confirmed the single in-plane 6-fold flipping motion of the coronenes, two unsynchronized motions were confirmed for the 3:1 TCNQ complex, which is consistent with a crystallographic study. Neutral [Ni(mnt)2] (mnt: maleonitriledithiolate) as an electron acceptor afforded a 5:2 complex with a DDA-type alternating π column flanked by another coronene, similar to the 3:1 TCNQ complex. The fact that the Cor-As in the [Ni(mnt)2] complex arrange in a non-parallel fashion must cause the fast in-plane rotation of Cor-A relative to that of Cor-B. This is in sharp contrast to the 3:1 TCNQ complex, in which the dimer of parallel Cor-As shows inter-column interactions with neighboring Cor-As. The solid-state (1)H NMR signal of the [Ni(mnt)2] complex suddenly broadens at temperatures below approximately 60 K, indicating that the in-plane rotation of the coronenes undergoes down to approximately 60 K; the rotational rate reaches the gigahertz regime at room temperature. Rotational barriers of these CT complexes, as estimated from variable-temperature spin-lattice relaxation time (T1) experiments, are significantly lower than that of pristine coronene. The investigated structure-property relationships indicate that the complexation not only facilitates the molecular rotation of coronenes but also provides a new solid-state rotor system that involves unsynchronized plural rotators.
For the purpose of investigating the correlation between host gas adsorption ability and structural flexibility, the combination of metal benzoate complexes [M(II)(2)(bza)(4)] (M(II) = Rh (a), Cu (b); bza = benzoate) and pyrazine derivatives (pyz = pyrazine (1), 2-mpyz = 2-methylpyrazine (2), 2,3-dmpyz = 2,3-dimethylpyrazine (3)) yields a series of one-dimensionally assembled complexes. The study of the adsorption properties of this series was examined for CO(2), H(2), N(2), O(2), and Ar gases at 195 K (CO(2)) or at 77 K (all others). The adsorption manners of these complexes are similar for each gas, while the pressure at which adsorption started or rapidly grew increased with a rise in the number of methyl groups in the case of adsorbable gases. The maximum amount of adsorption was a positive integer, e.g., 3 molecules per M(2) unit for 1 and 2 and 2 molecules per M(2) unit for 3 in the case of CO(2) adsorption for all complexes at 0.1 MPa of adsorbable gases. Structural transformation was observed accompanying gas adsorption. This transformation was observed when the adsorption amount reached 1 molecule per M(2) unit, suggesting a correlation of the adsorption amount and dynamic adsorption behavior. Single-crystal X-ray analyses of nonincluded crystals and CO(2) inclusions for all hosts (1-3) revealed that large structural changes occurred through CO(2) adsorption to increase the inner space for adsorption gases, depending on the substituents on the pyrazine ring. These facts were confirmed as a transition by DSC measurements using a mixed CO(2)/N(2) gas atmosphere. Solid-state (1)H and (2)H NMR studies of the crystalline sample of 1a and its partially deuterated samples of 1a' (deuterated phenyl group) and 1a'' (deuterated pyrazine) revealed rapid 180 degree-flip motions of the aromatic rings of the host skeletons, which form the walls of the channels. These "rotating" motions would help the diffusion of CO(2) molecules through a narrow channel at relatively low pressure. Indeed, the motions of phenyl groups and methyl-substituted pyrazine moieties of phenyl deuterated 3a were confirmed to be very slow by solid-state (1)H and (2)H NMR spectra, where the amount of adsorbed gas molecules was small for 3a at 0.1 MPa of CO(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.