Aims
Plaque burden (PB) measurement using intravascular optical coherence tomography (IVOCT) is currently thought to be inferior to intravascular ultrasound (IVUS). We developed an automated IVOCT image processing algorithm to enhance the external elastic lamina (EEL) contour. Thus, we investigated the accuracies of standard IVOCT and an IVOCT enhancement algorithm for measuring PB using IVUS as the reference standard.
Methods and results
The EEL-enhancement algorithm combined adaptive attenuation compensation, exponentiation, angular registration, and image averaging using three sequential frames. In two different laboratories with intravascular imaging expertise, PB was quantified on 200 randomized, matched IVOCT and IVUS images by four independent observers. Fibroatheroma, fibrocalcific plaque, fibrous plaque, pathological intimal thickening (PIT), and mixed plaque were included in each set. Pearson’s correlation coefficients between IVUS and standard IVOCT measurements of PB were 0.61, 0.67, 0.76, 0.78, and 0.87 for fibroatheromas, mixed plaques, fibrocalcific plaques, fibrous plaques, and PIT plaques, respectively. Pearson’s correlation coefficients increased to 0.81, 0.83, 0.83, 0.84, and 0.90 when using the EEL-enhanced images (P = 0.003, P = 0.004, P = 0.08, P = 0.12, and P = 0.23, respectively). EEL-enhanced IVOCT analysis was associated with a lower EEL-area measurement absolute error for fibroatheromas, mixed plaques, and all pooled plaques (P = 0.006, P = 0.02, and P < 0.001, respectively). Compared with standard IVOCT, the EEL-enhanced IVOCT images had a higher sensitivity (79% vs. 28%, P < 0.001) and specificity (98% vs. 85%, P = 0.03) for plaques with an IVUS PB ≥70%.
Conclusion
EEL-enhanced IVOCT can be used to reliably measure PB in all types of coronary atherosclerotic lesions, including fibroatheromas and mixed plaques.