Rationale: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, non-syndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease (CHD) phenotype. Rare genetic variants have been identified as important contributors to the risk of CHD, but relatively small numbers of TOF cases have been studied to date. Objective: We used whole exome sequencing (WES) to assess the prevalence of unique, deleterious variants in the largest cohort of non-syndromic TOF patients reported to date. Methods and Results: 829 TOF patients underwent WES. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database (gnomAD) and a scaled combined annotation-dependent depletion (CADD) score of ≥20. The clustering of variants in two genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5x10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbour unique, deleterious variants. 31 changes were observed in 37 probands (4.5%; 95% confidence interval [CI]:3.2-6.1%) and included seven loss-of-function variants 22 missense variants and two in-frame indels. Sanger-sequencing of the unaffected parents of seven cases identified five de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y and p.N1875S) were subjected to functional evaluation and two showed a reduction in Jagged1-induced NOTCH signalling. FLT4 variants were found in 2.4% (95% CI:1.6-3.8%) of TOF patients, with 21 patients harbouring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy Disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates including RYR1, ZFPM1, CAMTA2, DLX6 and PCM1. Conclusions: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.
IMPORTANCE Sudden cardiac death (SCD) is the most common mode of death in childhood hypertrophic cardiomyopathy (HCM), but there is no validated algorithm to identify those at highest risk. OBJECTIVE To develop and validate an SCD risk prediction model that provides individualized risk estimates. DESIGN, SETTING, AND PARTICIPANTS A prognostic model was developed from a retrospective, multicenter, longitudinal cohort study of 1024 consecutively evaluated patients aged 16 years or younger with HCM. The study was conducted from January 1, 1970, to December 31, 2017. EXPOSURES The model was developed using preselected predictor variables (unexplained syncope, maximal left-ventricular wall thickness, left atrial diameter, left-ventricular outflow tract gradient, and nonsustained ventricular tachycardia) identified from the literature and internally validated using bootstrapping. MAIN OUTCOMES AND MEASURES A composite outcome of SCD or an equivalent event (aborted cardiac arrest, appropriate implantable cardioverter defibrillator therapy, or sustained ventricular tachycardia associated with hemodynamic compromise). RESULTS Of the 1024 patients included in the study, 699 were boys (68.3%); mean (interquartile range [IQR]) age was 11 (7-14) years. Over a median follow-up of 5.3 years (IQR, 2.6-8.3; total patient years, 5984), 89 patients (8.7%) died suddenly or had an equivalent event (annual event rate, 1.49; 95% CI, 1.15-1.92). The pediatric model was developed using preselected variables to predict the risk of SCD. The model's ability to predict risk at 5 years was validated; the C statistic was 0.69 (95% CI, 0.66-0.72), and the calibration slope was 0.98 (95% CI, 0.59-1.38). For every 10 implantable cardioverter defibrillators implanted in patients with 6% or more of a 5-year SCD risk, 1 patient may potentially be saved from SCD at 5 years. CONCLUSIONS AND RELEVANCE This new, validated risk stratification model for SCD in childhood HCM may provide individualized estimates of risk at 5 years using readily obtained clinical risk factors. External validation studies are required to demonstrate the accuracy of this model's predictions in diverse patient populations.
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows:To assess the effectiveness and safety of physical activity promotion and exercise training interventions in individuals with congenital heart disease.
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows:To assess the effectiveness and safety of physical activity promotion and exercise training interventions in individuals with congenital heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.