Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are autosomal recessive conditions characterized by multiple subcutaneous skin nodules, gingival hypertrophy, joint contractures, and hyaline deposition. We previously mapped the gene for JHF to chromosome 4q21. We now report the identification of 15 different mutations in the gene encoding capillary morphogenesis protein 2 (CMG2) in 17 families with JHF or ISH. CMG2 is a transmembrane protein that is induced during capillary morphogenesis and that binds laminin and collagen IV via a von Willebrand factor type A (vWA) domain. Of interest, CMG2 also functions as a cellular receptor for anthrax toxin. Preliminary genotype-phenotype analyses suggest that abrogation of binding by the vWA domain results in severe disease typical of ISH, whereas in-frame mutations affecting a novel, highly conserved cytoplasmic domain result in a milder phenotype. These data (1) demonstrate that JHF and ISH are allelic conditions and (2) implicate perturbation of basement-membrane matrix assembly as the cause of the characteristic perivascular hyaline deposition seen in these conditions.
Noonan, LEOPARD and cardiofaciocutaneous syndromes (NS, LS and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS-mitogen-activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N= 270), LS (N= 6) and CFCS (N= 33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1 or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and 5 individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer-associated defects. NS-causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared than the recurrent cancer-associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions.
Pitt-Hopkins syndrome (PTHS), characterized by severe intellectual disability and typical facial gestalt, is part of the clinical spectrum of Rett-like syndromes. TCF4, encoding a basic helix-loop-helix (bHLH) transcription factor, was identified as the disease-causing gene with de novo molecular defects. While PTHS appears to be a recognizable clinical entity, it seems to remain underdiagnosed, especially when facial gestalt is less typical. With the aim to facilitate the diagnosis of PTHS and to increase its rate and specificity, we have investigated 33 novel patients and defined a Clinical Diagnosis Score. Analysis of 112 individuals (79 previously reported and 33 novel patients) allowed us to delineate the TCF4 mutational spectrum, with 40% point mutations, 30% small deletions/insertions, and 30% deletions. Most of these were private mutations and generated premature stop codons. Missense mutations were localized in the bHLH domain, which is a mutational hotspot. No obvious difference was observed between patients harboring truncating, missense mutations, or deletions, further supporting TCF4 haploinsufficiency as the molecular mechanism underlying PTHS. In this study, we have summarized the current knowledge of TCF4 molecular pathology, reported all the mutations in the TCF4 database (http://www.LOVD.nl/TCF4), and present a novel and comprehensive diagnostic strategy for PTHS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.