Problem
Short chain fatty acids (SCFAs), produced at relatively high levels by anaerobic bacteria in bacterial vaginosis (BV), are believed to be anti-inflammatory. BV, a common alteration of the genital microbiota associated with increased susceptibility to HIV infection, is characterized by increased levels of both pro-inflammatory cytokines and SCFAs. We investigated how SCFAs alone or together with TLR-ligands affected pro-inflammatory cytokine secretion.
Method of study
Cytokines were measured by ELISA. Flow was used for phenotyping and reactive oxygen species (ROS) measurement.
Results
SCFAs, at 20mM, induced IL-8, IL-6, and IL-1β release while lower levels (0.02–2mM) did not induce cytokine secretion. Levels >20mM were toxic to cells. Interestingly, lower levels of SCFAs significantly enhanced TLR2 ligand- and TLR7 ligand-induced production of IL-8 and TNFα in a time- and dose-dependent manner, but had little effect on LPS-induced cytokine release. SCFAs mediated their effects on pro-inflammatory cytokine production at least in part by inducing generation of reactive oxygen species.
Conclusions
Our data suggest that SCFAs, especially when combined with specific TLR ligands, contribute to a pro-inflammatory milieu in the lower genital tract and help further our understanding of how BV affects susceptibility to microbial infections.
The innate and adaptive immune systems are important mechanisms for resistance to pathogens in the female lower genital tract. Lactobacilli at this site help maintain a healthy vagina by producing several factors including lactic acid. Indeed, bacterial vaginosis, a condition in which the genital microbiota is altered, is strongly associated with increased rates of a number of infections including HIV. However, the precise factors that contribute to increased rates of microbial and viral infections in bacterial vaginosis remain to be elucidated.
We have studied the effects of bacterial microbiota in the lower genital tract on innate immunity and have found that Toll-like receptor ligands and short chain fatty acids, produced by bacterial microbiota, have dramatic effects on immune function. In this review, we will discuss these results, in addition to some recent articles that we believe will enhance our understanding of how microbes might interact with the immune system.
Biphasic plasma viral decays were modeled in 48 patients treated with ritonavir, zidovudine, and lamivudine. Estimated first- and second-phase decay rates were d1 as 0.47/day and d2 as 0.04/day. Interpatient differences in both decay rates were significant. The d1 was directly correlated with baseline CD4+, CD4+CD28+, and CD8+CD28+ T lymphocyte counts (P<.05) and inversely correlated with baseline virus load (P=.044) and the magnitude of CD4+ and CD8+ T lymphocyte recovery (P<.01). The d2 was directly correlated with baseline percentage of CD8+ T lymphocytes (P=.023), the CD8+CD38+ cell number (P=.024), and the level of IgG that binds to human immunodeficiency virus (HIV) type 1 gp120 (P=.02). Viral decay rates were not predictive of treatment failure or durability of viral suppression. These exploratory findings are consistent with a model in which immunologic factors contribute to elimination of HIV-infected cells and suggest a dynamic interplay between regulation of HIV expression and lymphocyte activation and recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.