Background Cannabis use is associated with increased risk of later psychotic disorder but whether it affects incidence of the disorder remains unclear. We aimed to identify patterns of cannabis use with the strongest effect on odds of psychotic disorder across Europe and explore whether differences in such patterns contribute to variations in the incidence rates of psychotic disorder. Methods We included patients aged 18-64 years who presented to psychiatric services in 11 sites across Europe and Brazil with first-episode psychosis and recruited controls representative of the local populations. We applied adjusted logistic regression models to the data to estimate which patterns of cannabis use carried the highest odds for psychotic disorder. Using Europe-wide and national data on the expected concentration of Δ⁹-tetrahydrocannabinol (THC) in the different types of cannabis available across the sites, we divided the types of cannabis used by participants into two categories: low potency (THC <10%) and high potency (THC ≥10%). Assuming causality, we calculated the population attributable fractions (PAFs) for the patterns of cannabis use associated with the highest odds of psychosis and the correlation between such patterns and the incidence rates for psychotic disorder across the study sites. Findings Between May 1, 2010, and April 1, 2015, we obtained data from 901 patients with first-episode psychosis across 11 sites and 1237 population controls from those same sites. Daily cannabis use was associated with increased odds of psychotic disorder compared with never users (adjusted odds ratio [OR] 3•2, 95% CI 2•2-4•1), increasing to nearly five-times increased odds for daily use of high-potency types of cannabis (4•8, 2•5-6•3). The PAFs calculated indicated that if high-potency cannabis were no longer available, 12•2% (95% CI 3•0-16•1) of cases of first-episode psychosis could be prevented across the 11 sites, rising to 30•3% (15•2-40•0) in London and 50•3% (27•4-66•0) in Amsterdam. The adjusted incident rates for psychotic disorder were positively correlated with the prevalence in controls across the 11 sites of use of high-potency cannabis (r = 0•7; p=0•0286) and daily use (r = 0•8; p=0•0109). Interpretation Differences in frequency of daily cannabis use and in use of high-potency cannabis contributed to the striking variation in the incidence of psychotic disorder across the 11 studied sites. Given the increasing availability of high-potency cannabis, this has important implications for public health.
Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi-center study into the identification and translational application of G × E in schizophrenia. While such investigations are now well underway, new challenges emerge for G × E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotype.
The influence of psychosocial stressors on psychosis risk has usually been studied in isolation and after the onset of the disorder, potentially ignoring important confounding relationships or the fact that some stressors that may be the consequence of the disorder rather than preexisting. The study of subclinical psychosis could help to address some of these issues. In this study, we investigated whether there was (i) an association between dimensions of subclinical psychosis and several psychosocial stressors including: childhood trauma, self-reported discrimination experiences, low social capital, and stressful life experiences, and (ii) any evidence of environment–environment (ExE) interactions between these factors. Data were drawn from the EUGEI study, in which healthy controls (N = 1497) and siblings of subjects with a psychotic disorder (N = 265) were included in six countries. The association between psychosocial stressors and subclinical psychosis dimensions (positive, negative and depressive dimension as measured by the Community Assessment of Psychic Experiences (CAPE) scale) and possible ExE interactions were assessed using linear regression models. After adjusting for sex, age, ethnicity, country, and control/sibling status, childhood trauma (β for positive dimension: 0.13, negative: 0.49, depressive: 0.26) and stressful life events (positive: 0.08, negative: 0.16, depressive: 0.17) were associated with the three dimensions. Lower social capital was associated with the negative and depression dimensions (negative: 0.26, depressive: 0.13), and self-reported discrimination experiences with the positive dimension (0.06). Our findings are in favor of independent, cumulative and non-specific influences of social adversities in subclinical psychosis in non-clinical populations, without arguments for E × E interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.