The BCR/ABL1 inhibitor Nilotinib is increasingly used to treat patients with chronic myeloid leukemia (CML). Although otherwise well-tolerated, Nilotinib has been associated with the occurrence of progressive arterial occlusive disease (AOD). Our objective was to determine the exact frequency of AOD and examine in vitro and in vivo effects of Nilotinib and Imatinib on endothelial cells to explain AOD-development. In contrast to Imatinib, Nilotinib was found to upregulate pro-atherogenic adhesion-proteins (ICAM-1, E-selectin, VCAM-1) on human endothelial cells. Nilotinib also suppressed endothelial cell proliferation, migration and tube-formation, and bound to a distinct set of target-kinases, relevant to angiogenesis and atherosclerosis, including angiopoietin receptor-1 TEK, ABL-2, JAK1, and MAP-kinases. Nilotinib and siRNA against ABL-2 also suppressed KDR expression. In addition, Nilotinib augmented atherosclerosis in ApoE-/- mice and blocked reperfusion and angiogenesis in a hind-limb-ischemia model of arterial occlusion, whereas Imatinib showed no comparable effects. Clinically overt AOD-events were found to accumulate over time in Nilotinib-treated patients. After a median observation-time of 2.0 years, the AOD-frequency was higher in these patients (29.4%) compared to risk factor- and age-matched controls (<5%). Together, Nilotinib exerts direct pro-atherogenic and anti-angiogenic effects on vascular endothelial cells, which may contribute to development of AOD in patients with CML.
Purpose: In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs.Experimental Design: CML LSCs were examined by flow cytometry, qPCR, and various bioassays. In addition, we examined the multipotent CD25 þ CML cell line KU812.
The concept of leukaemic stem cells (LSCs) has been developed to explain the complex cellular hierarchy and biology of leukaemias and to screen for pivotal targets that can be employed to improve drug therapies through LSC eradication in these patients. Some of the newly discovered LSC markers seem to be expressed in a disease-specific manner and may thus serve as major research tools and diagnostic parameters. A useful LSC marker in chronic myeloid leukaemia (CML) appears to be CD26, also known as dipeptidylpeptidase IV. Expression of CD26 is largely restricted to CD34 + /CD38 À LSCs in BCR/ABL1 + CML, but is not found on LSCs in other myeloid or lymphoid neoplasms, with the exception of lymphoid blast crisis of CML, BCR/ABL1 p210 + acute lymphoblastic leukaemia, and a very few cases of acute myeloid leukaemia. Moreover, CD26 usually is not expressed on normal bone marrow (BM) stem cells. Functionally, CD26 is a cytokine-targeting surface enzyme that may facilitate the mobilization of LSCs from the BM niche. In this article, we review our current knowledge about the biology and function of CD26 on CML LSCs and discuss the diagnostic potential of this new LSC marker in clinical haematology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.