Background COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. Methods A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. Results The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183–12.968], 0.025), viral RNA load (N1) (1.962 [1.244–3.096], 0.004); viral RNA load (N2) (2.229 [1.382–3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). Conclusions SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.
Human parechoviruses (HPeV) have been recently recognized as important viral agents in paediatric infections. The aims of this study were to investigate the HPeV infection prevalence in infants <1 month in Spain and, secondly, to analyse the clinical and epidemiological characteristics of the infected patients compared with those infected by enterovirus (EV). Infants <1 month with neurological or systemic symptoms were included in a multicentre prospective study. EV and HPeV detection by RT-PCR and genotyping were performed in cerebrospinal fluids (CSF), sera or throat swabs. Out of the total of 84 infants studied during 2013, 32 were EV positive (38 %) and 9 HPeV positive (11 %). HPeV-3 was identified in eight cases and HPeV-5 in one. Mean age of HPeV-positive patients was 18 days. Diagnoses were fever without source (FWS) (67 %), clinical sepsis (22 %) and encephalitis (11 %). Leukocytes in blood and CSF were normal. Pleocytosis (p = 0.03) and meningitis (p = 0.001) were significantly more frequent in patients with EV infections than with HPeV.Conclusions: Although HPeV-3 infections were detected less frequently than EV, they still account for approximately 10 % of the cases analysed in infants younger than 1 month. HPeV-3 was mainly associated with FWS and without leukocytosis and pleocytosis in CSF. In these cases, HPeV screening is desirable to identify the aetiologic agent and prevent unnecessary treatment and prolonged hospitalization. What is Known:• Human parechovirus may be a cause of fever and clinical sepsis in the neonatal period.• HPeV-3 might be one of the main agents causing severe neonatal neurological infections. What is New: • This is the first multicenter prospective study focused on newborns and contributes to a better knowledge of these viral infections. Clinical characteristics of enterovirus and parechovirus infections are compared specifically in the neonatal period.• Knowledge of HPeV infections by paediatricians and neonatologists can guide the diagnosis of these patients and avoid unnecessary treatment and prolonged hospitalization.
Background: Severe COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis. SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs, however viral RNA can be found also in peripheral blood and other tissues. Whether systemic spreading of the virus or viral components plays a role in the pathogenesis of the sepsis like disease observed in severe COVID-19 is currently unknown. Methods: We determined the association of plasma SARS-CoV-2 RNA with the biological responses and the clinical severity of patients with COVID-19. 250 patients with confirmed COVID-19 infection were recruited (50 outpatients, 100 hospitalised ward patients, and 100 critically ill). The association between plasma SARS-CoV-2 RNA and laboratory parameters was evaluated using multivariate GLM with a gamma distribution. The association between plasma SARS-CoV-2 RNA and severity was evaluated using multivariate ordinal logistic regression analysis and Generalized Linear Model (GLM) analysis with a binomial distribution. Results: The presence of SARS-CoV-2 RNA viremia was independently associated with a number of features consistently identified in sepsis: 1) high levels of cytokines (including CXCL10, CCL-2, IL-10, IL-1ra, IL-15, and G-CSF); 2) higher levels of ferritin and LDH; 3) low lymphocyte and monocyte counts 4) and low platelet counts. In hospitalised patients, the presence of SARS-CoV-2 RNA viremia was independently associated with critical illness: (adjusted OR= 8.30 [CI95%=4.21-16.34], p < 0.001). CXCL10 was the most accurate identifier of SARS-CoV-2-RNA viremia in plasma (area under the curve (AUC), [CI95%], p) = 0.85 [0.80 0.89), <0.001]), suggesting its potential role as a surrogate biomarker of viremia. The cytokine IL-15 most accurately differentiated clinical ward patients from ICU patients (AUC: 0.82 [0.76 0.88], <0.001). Conclusions: systemic dissemination of genomic material of SARS-CoV-2 is associated with a sepsis-like biological response and critical illness in patients with COVID-19. RNA viremia could represent an important link between SARS-CoV-2 infection, host response dysfunction and the transition from moderate illness to severe, sepsis-like COVID-19 disease.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Introduction Enterovirus A71 (EV-A71) is an emerging pathogen that causes a wide range of disorders including severe neurological manifestations. In the past 20 years, this virus has been associated with large outbreaks of hand, foot and mouth disease with neurological complications in the Asia-Pacific region, while in Europe mainly sporadic cases have been reported. In spring 2016, however, an EV-A71 outbreak associated with severe neurological cases was reported in Catalonia and spread further to other Spanish regions. Aim Our objective was to investigate the epidemiology and clinical characteristics of the outbreak. Methods We carried out a retrospective study which included 233 EV-A71-positive samples collected during 2016 from hospitalised patients. We analysed the clinical manifestations associated with EV-A71 infections and performed phylogenetic analyses of the 3’-VP1 and 3Dpol regions from all Spanish strains and a set of EV-A71 from other countries. Results Most EV-A71 infections were reported in children (mean age: 2.6 years) and the highest incidence was between May and July 2016 (83%). Most isolates (218/233) were classified as subgenogroup C1 and 217 of them were grouped in one cluster phylogenetically related to a new recombinant variant strain associated with severe neurological diseases in Germany and France in 2015 and 2016. Moreover, we found a clear association of EV-A71-C1 infection with severe neurological disorders, brainstem encephalitis being the most commonly reported. Conclusion An emerging recombinant variant of EV-A71-C1 was responsible for the large outbreak in 2016 in Spain that was associated with many severe neurological cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.