Objective To determine the effect of calcium supplementation on myocardial infarction, stroke, and sudden death in healthy postmenopausal women. Design Randomised, placebo controlled trial. Setting Academic medical centre in an urban setting in New Zealand. Participants 1471 postmenopausal women (mean age 74): 732 were randomised to calcium supplementation and 739 to placebo. Main outcome measures Adverse cardiovascular events over five years: death, sudden death, myocardial infarction, angina, other chest pain, stroke, transient ischaemic attack, and a composite end point of myocardial infarction, stroke, or sudden death. Results Myocardial infarction was more commonly reported in the calcium group than in the placebo group (45 events in 31 women v 19 events in 14 women, P=0.01). The composite end point of myocardial infarction, stroke, or sudden death was also more common in the calcium group (101 events in 69 women v 54 events in 42 women, P=0.008). After adjudication myocardial infarction remained more common in the calcium group (24 events in 21 women v 10 events in 10 women, relative risk 2.12, 95% confidence interval 1.01 to 4.47). For the composite end point 61 events were verified in 51 women in the calcium group and 36 events in 35 women in the placebo group (relative risk 1.47, 0.97 to 2.23). When unreported events were added from the national database of hospital admissions in New Zealand the relative risk of myocardial infarction was 1.49 (0.86 to 2.57) and that of the composite end point was 1.21 (0.84 to 1.74). The respective rate ratios were 1.67 (95% confidence intervals 0.98 to 2.87) and 1.43 (1.01 to 2.04); event rates: placebo 16.3/1000 person years, calcium 23.3/1000 person years. For stroke (including unreported events) the relative risk was 1.37 (0.83 to 2.28) and the rate ratio was 1.45 (0.88 to 2.49). Conclusion Calcium supplementation in healthy postmenopausal women is associated with upward trends in cardiovascular event rates. This potentially detrimental effect should be balanced against the likely benefits of calcium on bone.Trial registration Australian Clinical Trials Registry ACTRN 012605000242628.
Background Neonatal hypoglycemia is common and can cause neurologic impairment, but evidence supporting thresholds for intervention is limited. Methods We performed a prospective cohort study involving 528 neonates with a gestational age of at least 35 weeks who were considered to be at risk for hypoglycemia; all were treated to maintain a blood glucose concentration of at least 47 mg per deciliter (2.6 mmol per liter). We intermittently measured blood glucose for up to 7 days. We continuously monitored interstitial glucose concentrations, which were masked to clinical staff. Assessment at 2 years included Bayley Scales of Infant Development III and tests of executive and visual function. Results Of 614 children, 528 were eligible, and 404 (77% of eligible children) were assessed; 216 children (53%) had neonatal hypoglycemia (blood glucose concentration, <47 mg per deciliter). Hypoglycemia, when treated to maintain a blood glucose concentration of at least 47 mg per deciliter, was not associated with an increased risk of the primary outcomes of neurosensory impairment (risk ratio, 0.95; 95% confidence interval [CI], 0.75 to 1.20; P = 0.67) and processing difficulty, defined as an executive-function score or motion coherence threshold that was more than 1.5 SD from the mean (risk ratio, 0.92; 95% CI, 0.56 to 1.51; P = 0.74). Risks were not increased among children with unrecognized hypoglycemia (a low interstitial glucose concentration only). The lowest blood glucose concentration, number of hypoglycemic episodes and events, and negative interstitial increment (area above the interstitial glucose concentration curve and below 47 mg per deciliter) also did not predict the outcome. Conclusions In this cohort, neonatal hypoglycemia was not associated with an adverse neurologic outcome when treatment was provided to maintain a blood glucose concentration of at least 47 mg per deciliter. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.)
for the Children With Hypoglycemia and Their Later Development (CHYLD) Study Team IMPORTANCE Hypoglycemia is common during neonatal transition and may cause permanent neurological impairment, but optimal intervention thresholds are unknown.OBJECTIVE To test the hypothesis that neurodevelopment at 4.5 years is related to the severity and frequency of neonatal hypoglycemia. DESIGN, SETTING, AND PARTICIPANTSThe Children With Hypoglycemia and Their Later Development (CHYLD) Study is a prospective cohort investigation of moderate to late preterm and term infants born at risk of hypoglycemia. Clinicians were masked to neonatal interstitial glucose concentrations; outcome assessors were masked to neonatal glycemic status. The setting was a regional perinatal center in Hamilton, New Zealand. The study was conducted from December 2006 to November 2010. The dates of the follow-up were September 2011 to June 2015. Participants were 614 neonates born from 32 weeks' gestation with at least 1 risk factor for hypoglycemia, including diabetic mother, preterm, small, large, or acute illness. Blood and masked interstitial glucose concentrations were measured for up to 7 days after birth. Infants with hypoglycemia (whole-blood glucose concentration <47 mg/dL) were treated to maintain blood glucose concentration of at least 47 mg/dL. EXPOSURES Neonatal hypoglycemic episode, defined as at least 1 consecutive blood glucose concentration less than 47 mg/dL, a severe episode (<36 mg/dL), or recurrent (Ն3 episodes). An interstitial episode was defined as an interstitial glucose concentration less than 47 mg/dL for at least 10 minutes. MAIN OUTCOMES AND MEASURESCognitive function, executive function, visual function, and motor function were assessed at 4.5 years. The primary outcome was neurosensory impairment, defined as poor performance in one or more domains. RESULTSIn total, 477 of 604 eligible children (79.0%) were assessed. Their mean (SD) age at the time of assessment was 4.5 (0.1) years, and 228 (47.8%) were female. Those exposed to neonatal hypoglycemia (280 [58.7%]) did not have increased risk of neurosensory impairment (risk difference [RD], 0.01; 95% CI, −0.07 to 0.10 and risk ratio [RR], 0.96; 95% CI, 0.77 to 1.21). However, hypoglycemia was associated with increased risk of low executive function (RD, 0.05; 95% CI, 0.01 to 0.10 and RR, 2.32; 95% CI, 1.17 to 4.59) and visual motor function (RD, 0.03; 95% CI, 0.01 to 0.06 and RR, 3.67; 95% CI, 1.15 to 11.69), with highest risk in children exposed to severe, recurrent, or clinically undetected (interstitial episodes only) hypoglycemia.CONCLUSIONS AND RELEVANCE Neonatal hypoglycemia was not associated with increased risk of combined neurosensory impairment at 4.5 years but was associated with a dose-dependent increased risk of poor executive function and visual motor function, even if not detected clinically, and may thus influence later learning. Randomized trials are needed to determine optimal screening and intervention thresholds based on assessment of neurodevelopment at le...
Heart disease is the major cause of death in diabetes, a disorder characterized by chronic hyperglycemia and cardiovascular complications. Although altered systemic regulation of transition metals in diabetes has been the subject of previous investigation, it is not known whether changed transition metal metabolism results in heart disease in common forms of diabetes and whether metal chelation can reverse the condition. We found that administration of the Cu-selective transition metal chelator trientine to rats with streptozotocin-induced diabetes caused increased urinary Cu excretion compared with matched controls. A Cu II -trientine complex was demonstrated in the urine of treated rats. In diabetic animals with established heart failure, we show here for the first time that 7 weeks of oral trientine therapy significantly alleviated heart failure without lowering blood glucose, substantially improved cardiomyocyte structure, and reversed elevations in left ventricular collagen and  1 integrin. Oral trientine treatment also caused elevated Cu excretion in humans with type 2 diabetes, in whom 6 months of treatment caused elevated left ventricular mass to decline significantly toward normal. These data implicate accumulation of elevated loosely bound Cu in the mechanism of cardiac damage in diabetes and support the use of selective Cu chelation in the treatment of this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.