Feedback mechanisms that dissipate excess photoexcitations in light-harvesting complexes (LHCs) are necessary to avoid detrimental oxidative stress in most photosynthetic eukaryotes. Here we demonstrate the unique ability of LHCSR, a stress-related LHC from the model organism Chlamydomonas reinhardtii, to sense pH variations, reversibly tuning its conformation from a light-harvesting state to a dissipative one. This conformational change is induced exclusively by the acidification of the environment, and the magnitude of quenching is correlated to the degree of acidification of the environment. We show that this ability to respond to different pH values is missing in the related major LHCII, despite high structural homology. Via mutagenesis and spectroscopic characterization, we show that LHCSR's uniqueness relies on its peculiar C-terminus subdomain, which acts as a sensor of the lumenal pH, able to tune the quenching level of the complex.
G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.