We report 10 heterozygous mutations in the human insulin gene in 16 probands with neonatal diabetes. A combination of linkage and a candidate gene approach in a family with four diabetic members led to the identification of the initial INS gene mutation. The mutations are inherited in an autosomal dominant manner in this and two other small families whereas the mutations in the other 13 patients are de novo. Diabetes presented in probands at a median age of 9 weeks, usually with diabetic ketoacidosis or marked hyperglycemia, was not associated with  cell autoantibodies, and was treated from diagnosis with insulin. The mutations are in critical regions of the preproinsulin molecule, and we predict that they prevent normal folding and progression of proinsulin in the insulin secretory pathway. The abnormally folded proinsulin molecule may induce the unfolded protein response and undergo degradation in the endoplasmic reticulum, leading to severe endoplasmic reticulum stress and potentially  cell death by apoptosis. This process has been described in both the Akita and Munich mouse models that have dominant-acting missense mutations in the Ins2 gene, leading to loss of  cell function and mass. One of the human mutations we report here is identical to that in the Akita mouse. The identification of insulin mutations as a cause of neonatal diabetes will facilitate the diagnosis and possibly, in time, treatment of this disorder.endoplasmic reticulum stress ͉ insulin biosynthesis ͉ disulfide bonds ͉ unfolded protein response
Maturity-onset diabetes of the young (MODY) is a form of non-insulin-dependent diabetes mellitus (NIDDM) characterized by early onset, usually before 25 years of age and often in adolescence, and by autosomal dominant inheritance [1]. Although commonly thought to be a relatively rare form of NIDDM, recent studies suggest that it may not be that uncommon and 2-5 % of patients with NIDDM may in fact have MODY [2]. Mutations in genes on chromosomes 20, 7 and 12, designated MODY1, MODY2/glucokinase (GCK) and MODY3, respectively, can cause this form of diabetes [3][4][5]. Moreover, there are likely to be additional MODY genes since there are families in which MODY does not cosegregate with markers tightly linked to the three known MODY loci [5]. Diabetologia (1997) Summary Mutations in glucokinase are associated with defects in insulin secretion and hepatic glycogen synthesis resulting in mild chronic hyperglycaemia, impaired glucose tolerance or diabetes mellitus. We screened members of 35 families with features of maturity-onset diabetes of the young for mutations in the glucokinase gene and found 16 different mutations. They included 14 new mutations in the glucokinase gene: 9 missense mutations (A53S, G80A, H137R, T168P, M210T, C213R, V226M, S336L and V367M); 2 nonsense mutations (E248X and S360X); a deletion of one nucleotide resulting in a frameshift (V401del1); a substitution of a conserved nucleotide at a splice acceptor site (L122-1G → T); and a 10 base pair deletion that removed the GT of the splice donor site and the following eight nucleotides (K161 + 2del10). In addition, we found two previously identified mutations: R186X and G261R. Study of 260 subjects with glucokinase-deficient hyperglycaemia from 42 families with 36 different GCK mutations made it possible to define the clinical profile of this subtype of non-insulin-dependent diabetes mellitus (NIDDM). Hyperglycaemia due to glucokinase deficiency is often mild (fewer than 50 % of subjects have overt diabetes) and is evident during the early years of life. Despite the long duration of hyperglycaemia, glucokinase-deficient subjects have a low prevalence of micro-and macro-vascular complications of diabetes. Obesity, arterial hypertension and dyslipidaemia are also uncommon in this form of NIDDM. [Diabetologia (1997) 40: 217-224]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.