The mitogen-activated protein kinase (MAPK)/extracellular signal kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signal transduction pathways have been implicated in the pathogenesis of leukemia. The aim of this study was to investigate the effect of the combination of ERK1/2 inhibitor AZD0364 and PI3K inhibitor ZSTK474 on acute lymphoblastic leukemia (ALL) REH, MOLT-4, acute myeloid leukemia (AML) MOLM-14, and chronic myeloid leukemia (CML) K562 cell lines. To evaluate the interactions of the drugs, cells were treated for 48 h with AZD0364 or ZSTK474 alone and in combination at fixed ratios. The combinatorial effects of both inhibitors were synergistic over a wide range of concentrations in REH, MOLT-4, and MOLM-14 cell lines. However, in K562 cells, the effects were found to be antagonistic. Furthermore, AZD0364 and ZSTK474 significantly decreased both ERK1/2 and AKT activation in REH, MOLT-4, and MOLM-14 cells. The results showed that incubation with both AZD0364 and ZSTK474 inhibited cell viability, increased reactive oxygen species (ROS) production, and induced apoptosis in leukemia cells. We observed that combined treatment with AZD0364 and ZSTK474 affected nuclear factor-κB (NF-κB) and antioxidant protein levels: NF-E2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), thioredoxin (Trx), thioredoxin reductase (TrxR), and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio. These effects were accompanied with decreased antiapoptotic survivin protein level. However, distinct cell line dependent effects were observed. In conclusion, the combination of AZD0364 and ZSTK474 can exert a synergistic anticancer effect in ALL and AML cells, which is associated with the induction of oxidative stress and the involvement of cellular antioxidant defense mechanisms.
The aim of this study was to: (1) find out whether laryngomalacia (LM) types are related to clinical course; (2) which patients with LM are at higher risk of other airway malacia [tracheomalacia (TM) and/or bronchomalacia (BM)]; and (3) evaluate the prevalence of LM in our region. Patients with established LM diagnosis and complete clinical and endoscopy records were enrolled. They were classified into different LM types according to classification based on the side of supraglottic obstruction. One hundred ten children were included. The most common LM appearance was type I-58 children, followed by combine types (I ? II and I ? III)-38. The other airway malacia were found in 47 patients: TM in 31, BM in 10, and TM with BM in 6. Other comorbidities (cardiac, neurological, and genetic disorders) were identified in 30 children. Patients with combine types of LM differ from those with single type of LM in terms of prematurity (13 vs 31 %, p = 0.04) and higher weight on the examination day (p = 0.006). Patients with other airway malacia differ from children with isolated LM in terms of prematurity (40 vs 13 %, p = 0.008), comorbidities (38 vs 19 %, p = 0.024), and lower weight on the examination day (p = 0.014). The prevalence of clinically relevant LM was one in 2600-3100 newborns. Clinical course of LM cannot be anticipated on the basis of solely endoscopic evaluation of the larynx. Comorbidities and prematurity increase the risk of other airway malacia. The prevalence of LM is relatively high in the middle-south part of Poland.
BackgroundThe objective of the study was to determine the relationship between common carotid artery intima-media thickness (CCA-IMT) and histologically assessed calcification of radial artery in relation to clinical features and laboratory markers of bone and mineral metabolism, inflammation, and oxidative stress in patients with stage 5 chronic kidney disease (CKD).MethodsThe study comprised 59 patients (36 hemodialyzed, 23 predialysis). CCA-IMT was measured by ultrasonography; the biochemical parameters examined were assessed using routine laboratory methods, ELISA micro-plate immunoassays and spectrophotometry. Fragments of radial artery obtained during creation of hemodialysis access were cryosectioned and stained for calcifications using von Kossa method and alizarin red.ResultsGlucose, osteoprotegerin, pentraxin 3 and Framingham risk score significantly correlated with CCA-IMT. In multiple regression analysis, OPG positively predicted CCA-IMT. Radial artery calcifications were found in 34 patients who showed higher CCA-IMT (0.98 ± 0.13 vs 0.86 ± 0.14 mm; P = 0.006). Higher CCA-IMT values were also associated with more advanced calcifications. CCA-IMT and the presence of plaques in common carotid artery were positive predictors of radial artery calcifications, independent of dialysis status, Framingham risk score, CRP and Ca x Pi [OR for calcifications 2.19 (1.08-4.45) per 0.1 mm increase in CCA-IMT]. The presence of radial artery calcifications was a significant predictor of mortality, independent of dialysis status and Framingham risk score [HR 3.16 (1.03-9.64)].ConclusionsIn CKD patients, CCA-IMT examination can be used as a surrogate measure to assess the incidence and severity of arterial medial calcification which is associated with poor clinical outcome in these patients.
Circadian rhythmicity affects neuronal activity induced changes in the density of synaptic contacts and dendritic spines, the most common location of synapses, in mouse somatosensory cortex. In the present study we analyzed morphology of single- and double-synapse spines under light/dark (12:12) and constant darkness conditions. Using serial electron micrographs we examined the shape of spines (stubby, thin, mushroom) and their content (smooth endoplasmic reticulum, spine apparatus), because these features are related to the maturation and stabilization of spines. We observed significant diurnal and circadian changes in the shape of spines that are differentially regulated: single-synapse spines remain under circadian clock regulation, while changes of double-synapse spines are driven by light. The thin and mushroom single-synapse spines, regardless of their content, are more stable comparing with the stubby single-synapse spines that show the greatest diversity. All types of double-synapse spines demonstrate a similar level of stability. In light/dark regime, formation of new mushroom single-synapse spines occurs, while under constant darkness new stubby single-synapse spines are formed. There are no shape preferences for new double-synapse spines. Diurnal and circadian alterations also concern spine content: both light exposure and the clock influence translocation of smooth endoplasmic reticulum from dendritic shaft to the spine. The increasing number of mushroom single-synapse spines and the presence of only those mushroom double-synapse spines that contain spine apparatus in the light phase indicates that the exposure to light, a stress factor for nocturnal animals, promotes enlargement and maturation of spines to increase synaptic strength and to enhance the effectiveness of neurotransmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.