The genomic region encompassing the Major Histocompatibility Complex (MHC) contains polymorphic frozen blocks which have developed by local imperfect sequential duplication associated with insertion and deletion (indels). In the alpha block surrounding HLA-A, there are ten duplication units or beads on the 62.1 ancestral haplotype. Each bead contains or contained sequences representing Class I, PERB11 (MHC Class I chain related (MIC) and human endogenous retrovirus (HERV) 16. Here we consider explanations for co-occurrence of genomic polymorphism, duplication and HERVs and we ask how these features encode susceptibility to numerous and very diverse diseases. Ancestral haplotypes differ in their copy number and indels in addition to their coding regions. Disease susceptibility could be a function of all of these differences. We propose a model of the evolution of the human MHC. Population-specific integration of retroviral sequences could explain rapid diversification through duplication and differential disease susceptibility. If HERV sequences can be protective, there are exciting prospects for manipulation. In the meanwhile, it will be necessary to understand the function of MHC genes such as PERB11 (MIC) and many others discovered by genomic sequencing.
Myostatin, or growth and differentiation factor 8 (GDF8), has been identified as the factor causing a phenotype known as double muscling, in which a series of mutations render the gene inactive, and therefore, unable to regulate muscle fibre deposition. This phenotype occurs at a high frequency in some breeds of cattle such as Belgian Blue and Peidmontese. Phylogenetic analysis has shown that there has been positive selection pressure for non-synonymous mutations within the myostatin gene family, around the time of the divergence of cattle, sheep and goats, and these positive selective pressures on non-ancestral myostatin are relatively recent. To date, there have been reports of nine mutations in coding regions of myostatin that cause non-synonymous changes, of which three cause missense mutations, including two in exon 1 and one in exon 2. The remaining six mutations, located in exons 2 and 3, result in premature stop codons, which are the mutations responsible for the double-muscling phenotype. Unfortunately, breed management problems exist for double-muscled cattle, such as birthing difficulties, which can be overcome through genetically controlled breeding programmes, as shown in this review.
Insufficient blood levels of the neurohormone vitamin D are associated with increased risk of COVID-19 severity and mortality. Despite the global rollout of vaccinations and promising preliminary results, the focus remains on additional preventive measures to manage COVID-19. Results conflict on vitamin D’s plausible role in preventing and treating COVID-19. We examined the relation between vitamin D status and COVID-19 severity and mortality among the multiethnic population of the United Arab Emirates. Our observational study used data for 522 participants who tested positive for SARS-CoV-2 at one of the main hospitals in Abu Dhabi and Dubai. Only 464 of those patients were included for data analysis. Demographic and clinical data were retrospectively analyzed. Serum samples immediately drawn at the first hospital visit were used to measure serum 25-hydroxyvitamin D [25(OH)D] concentrations through automated electrochemiluminescence. Levels < 12 ng/mL were significantly associated with higher risk of severe COVID-19 infection and of death. Age was the only other independent risk factor, whereas comorbidities and smoking did not contribute to the outcomes upon adjustment. Sex of patients was not an important predictor for severity or death. Our study is the first conducted in the UAE to measure 25(OH)D levels in SARS-CoV-2-positive patients and confirm the association of levels < 12 ng/mL with COVID-19 severity and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.