BackgroundTriple-negative breast cancer (TNBC) is a highly heterogeneous group of cancers, and molecular subtyping is necessary to better identify molecular-based therapies. While some classifiers have been established, no one has integrated the expression profiles of long noncoding RNAs (lncRNAs) into such subtyping criterions. Considering the emerging important role of lncRNAs in cellular processes, a novel classification integrating transcriptome profiles of both messenger RNA (mRNA) and lncRNA would help us better understand the heterogeneity of TNBC.MethodsUsing human transcriptome microarrays, we analyzed the transcriptome profiles of 165 TNBC samples. We used k-means clustering and empirical cumulative distribution function to determine optimal number of TNBC subtypes. Gene Ontology (GO) and pathway analyses were applied to determine the main function of the subtype-specific genes and pathways. We conducted co-expression network analyses to identify interactions between mRNAs and lncRNAs.ResultsAll of the 165 TNBC tumors were classified into four distinct clusters, including an immunomodulatory subtype (IM), a luminal androgen receptor subtype (LAR), a mesenchymal-like subtype (MES) and a basal-like and immune suppressed (BLIS) subtype. The IM subtype had high expressions of immune cell signaling and cytokine signaling genes. The LAR subtype was characterized by androgen receptor signaling. The MES subtype was enriched with growth factor signaling pathways. The BLIS subtype was characterized by down-regulation of immune response genes, activation of cell cycle, and DNA repair. Patients in this subtype experienced worse recurrence-free survival than others (log rank test, P = 0.045). Subtype-specific lncRNAs were identified, and their possible biological functions were predicted using co-expression network analyses.ConclusionsWe developed a novel TNBC classification system integrating the expression profiles of both mRNAs and lncRNAs and determined subtype-specific lncRNAs that are potential biomarkers and targets. If further validated in a larger population, our novel classification system could facilitate patient counseling and individualize treatment of TNBC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0690-8) contains supplementary material, which is available to authorized users.
As a metropolis with rapid social and economic development over the past three decades, Shanghai has a breast cancer incidence that surpasses all other cancer registries in China. In order to estimate the regular changing patterns of female breast cancer in urban Shanghai, population-based incidence data from 1975 to 2004 were studied. In addition, a one-hospital-based in-patient database of 7,443 female breast cancer patients treated surgically between January-1990 and July-2007 were reviewed, retrospectively. We observed that breast cancer incidence increased dramatically over the past 30 years and documented a peak incidence represented by the middle-age group (45-59 years), which emerged in the last 20 years. The incidence peak moved from the 40-44 year group in the previous two decades to the 50-54 year group in the most recent decade. Median age at diagnosis was earlier in Shanghai than in the western countries, although it increased from 47.5-year in 1990 to 50-year in 2007. Considerably higher exposure to reproductive risk factors and relatively fewer hormone-dependent cases were observed. The proportion of asymptomatic cases detected by screening gradually increased, as well as that of early-stage cases (from 78.6% in 1990 to 93.3% in 2007) and carcinoma in situ (14.7% in 2007). Analysis of surgical treatment patterns suggested a trend of less-invasive options. Both age of peak incidence and median age at diagnosis increase with time, which suggests that increased incidence trending along with increasing age, will be observed in the future. Consequently, specific screening protocol should be refined to consider birth cohorts.
BackgroundAdjuvant chemotherapy (AC) improves survival among patients with operable breast cancer. However, the effect of delay in AC initiation on survival is unclear. We performed a systematic review and meta-analysis to determine the relationship between time to AC and survival outcomes.MethodsPubMed, EMBASE, Cochrane Database of Systematic Reviews, and Web-of-Science databases (between January-1 1978 and January-29, 2013) were searched for eligible studies. Hazard ratios (HRs) for overall survival (OS) and disease-free survival (DFS) from each study were converted to a regression coefficient (β) corresponding to a continuous representation per 4-week delay of AC. Most used regimens of chemotherapy in included studies were CMF (cyclophosphamide, methotrexate, and fluorouracil) or anthracycline-based. Individual adjusted β were combined using a fixed-effects or random-effects model depending on heterogeneity.ResultsWe included 7 eligible studies with 9 independent analytical groups involving 34,097 patients, 1 prospective observational study, 2 secondary analyses in randomized trials (4 analytical groups), and 4 hospital-/population-based retrospective study. The overall meta-analysis demonstrated that a 4-week increase in time to AC was associated with a significant decrease in both OS (HR = 1.15; 95% confidence interval [CI], 1.03-1.28; random-effects model) and DFS (HR = 1.16; 95% CI, 1.01-1.33; fixed-effects model). One study caused a significant between-study heterogeneity for OS (P < 0.001; I2 = 75.4%); after excluding that single study, there was no heterogeneity (P = 0.257; I2 = 23.6%) and the HR was more significant (HR = 1.17; 95% CI, 1.12-1.22; fixed-effects model). Each single study did not fundamentally influence the positive outcome and no evidence of publication bias was observed in OS.ConclusionsLonger time to AC is probably associated with worse survival in breast cancer patients.
HER2-negative breast cancer with activating mutations can benefit from HER2-targeted therapies. Meanwhile, mutations in the HER2 kinase domain might be a key mechanism of resistance to HER2-targeted therapy, and irreversible tyrosine kinase inhibitors such as neratinib may offer alternative treatment options. Clin Cancer Res; 22(19); 4859-69. ©2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.