We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease.
Objective
The control of angiogenesis during chondrogenic differentiation is an important issue affecting the use of stem cells in cartilage repair, especially with regard to the persistence of regenerated cartilage. This study was undertaken to investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the blocking of VEGF with its antagonist, soluble Flt-1 (sFlt-1), on the chondrogenesis of skeletal muscle-derived stem cells (MDSCs) in a rat model of osteoarthritis (OA).
Methods
We investigated the effect of VEGF on cartilage repair in an immunodeficiency rat model of OA after intraarticular injection of murine MDSCs expressing bone morphogenetic protein 4 (BMP-4) in combination with MDSCs expressing VEGF or sFlt-1.
Results
In vivo, a combination of sFlt-1– and BMP-4–transduced MDSCs demonstrated better repair without osteophyte formation macroscopically and histologically following OA induction, when compared with the other groups. Higher differentiation/proliferation and lower levels of chondrocyte apoptosis were also observed in sFlt-1– and BMP-4–transduced MDSCs compared with a combination of VEGF- and BMP-4– transduced MDSCs or with BMP-4–transduced MDSCs alone. In vitro experiments with mixed pellet co-culture of MDSCs and OA chondrocytes revealed that BMP-4– transduced MDSCs produced the largest pellets, which had the highest gene expression of not only type II collagen and SOX9 but also type X collagen, suggesting formation of hypertrophic chondrocytes.
Conclusion
Our results demonstrate that MDSC-based therapy involving sFlt-1 and BMP-4 repairs articular cartilage in OA mainly by having a beneficial effect on chondrogenesis by the donor and host cells as well as by preventing angiogenesis, which eventually prevents cartilage resorption, resulting in persistent cartilage regeneration and repair.
Objective. To investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the effect of blocking VEGF with its antagonist, soluble Flt-1 (sFlt-1), on chondrogenesis, using muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle.Methods. The direct effect of VEGF on the in vitro chondrogenic ability of mouse MDSCs was tested using a pellet culture system, followed by real-time quantitative polymerase chain reaction (PCR) and histologic analyses. Next, the effect of VEGF on chondrogenesis within the synovial joint was tested, using genetically engineered MDSCs implanted into rat osteochondral defects. In this model, MDSCs transduced with a retroviral vector to express bone morphogenetic protein 4 (BMP-4) were coimplanted with MDSCs transduced to express either VEGF or sFlt-1 (a VEGF antagonist) to provide a gain-and loss-of-function experimental design. Histologic scoring was used to compare cartilage formation among the treatment groups.Results. Hyaline-like cartilage matrix production was observed in both VEGF-treated and VEGF-blocked (sFlt-1-treated) pellet cultures, but quantitative PCR revealed that sFlt-1 treatment improved the expression of chondrogenic genes in MDSCs that were stimulated to undergo chondrogenic differentiation with BMP-4 and transforming growth factor 3 (TGF3). In vivo testing of articular cartilage repair showed that VEGFtransduced MDSCs caused an arthritic change in the knee joint, and sFlt-1 improved the MDSC-mediated repair of articular cartilage, compared with BMP-4 alone.Conclusion. Soluble Flt-1 gene therapy improved the BMP-4-and TGF3-induced chondrogenic gene expression of MDSCs in vitro and improved the persistence of articular cartilage repair by preventing vascularization and bone invasion into the repaired articular cartilage.
Conclusion. Our findings demonstrate that sex influences the chondrogenic differentiation and articular cartilage regeneration potential of MDSCs. Compared with female MDSCs, male MDSCs display more chondrogenic differentiation and better cartilage regeneration potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.