Summary We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival ‘neuronal’ subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, lncRNA, and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma-in-situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.
It has come to our attention that we inadvertently used the wrong synonymous name for PD-L1 in the Discussion section on page 551. Instead of CD270, which is a synonymous name for the HVEM receptor, we should have used CD274 in that sentence. This error has been corrected online. We apologize for any confusion this may have caused.
Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (>90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.
To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor/normal pairs. Recurrent alterations in lung SqCCs were more similar to other squamous carcinomas than to lung ADCs. Novel significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. Novel amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase/Ras/Raf alterations revealed mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least 5 predicted neoepitopes. While targeted therapies for lung ADC and lung SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.