Understanding the dynamics of food production is critical to improving food security. This is particularly important in regions that rely on subsistence agriculture with little adaptive capacity to climate change. Sorghum plays an important role in food security in some of the poorest parts of the world. This article reviews the literature to identify and examine the major factors affecting sorghum production in three major production regions. Factors were not categorized ex ante but rather determined from the review. Ten major factors were identified as having notable impacts on sorghum production: climate change, population growth/economic development, non-food demand, agricultural inputs, demand for other crops, agricultural resources scarcity, biodiversity, cultural influence, price and armed conflict. This synthesis revealed that (1) multiple factors simultaneously affect sorghum production; (2) the effect of each factor is greatly influenced by the magnitude and certainty of one or more other factors; and, (3) factors differ in relevance and degree with regard to geography. Generally, improved agricultural inputs, population growth/economic development and climate change have substantial influence on sorghum production. However, local dynamics likely go beyond these broad trends and more exhaustive, locally-focused studies are needed for actionable planning purposes.
Unplanned urban settlements exist worldwide. The geospatial information of these areas is critical for urban management and reconstruction planning but usually unavailable. Automatically characterizing individual buildings in the unplanned urban village using remote sensing imagery is very challenging due to complex landscapes and high-density settlements. The newly emerging deep learning method provides the potential to characterize individual buildings in a complex urban village. This study proposed an urban village mapping paradigm based on U-net deep learning architecture. The study area is located in Guangzhou City, China. The Worldview satellite image with eight pan-sharpened bands at a 0.5-m spatial resolution and building boundary vector file were used as research purposes. There are ten sites of the urban villages included in this scene of the Worldview image. The deep neural network model was trained and tested based on the selected six and four sites of the urban village, respectively. Models for building segmentation and classification were both trained and tested. The results indicated that the U-net model reached overall accuracy over 86% for building segmentation and over 83% for the classification. The F1-score ranged from 0.9 to 0.98 for the segmentation, and from 0.63 to 0.88 for the classification. The Interaction over Union reached over 90% for the segmentation and 86% for the classification. The superiority of the deep learning method has been demonstrated through comparison with Random Forest and object-based image analysis. This study fully showed the feasibility, efficiency, and potential of the deep learning in delineating individual buildings in the high-density urban village. More importantly, this study implied that through deep learning methods, mapping unplanned urban settlements could further characterize individual buildings with considerable accuracy.
Optical remote sensing data have been widely used for estimating forest aboveground biomass (AGB). However, the use of optical images is often restricted by the saturation of spectral reflectance for forests that have multilayered and complex canopy structures and high AGB values and by the effect of spectral reflectance from underlayer shrub, grass, and bare soil for young stands. This usually leads to overestimations and underestimations for smaller and larger values, respectively, and makes it very challenging to improve the estimation accuracy of forest AGB. In this study, a novel methodology was proposed by incorporating stand age as a dummy variable into four models to improve the estimation accuracy of the Pinus densata forest AGB in Yunnan of Southwestern China. A total of eight models, including two parametric models (LM: linear regression model and LMC: LM with combined variables), two nonparametric models (RF: random forest and ANN: artificial neural network) without the age dummy variable, and four corresponding models with the age dummy variable (DLM, DLMC, DRF, and DANN), were compared to estimate AGB. Landsat 8 Operational Land Imager (OLI) images and 147 sample plots were acquired and utilized. The results showed that (1) compared with the two parametric models, the two nonparametric algorithms resulted in significantly greater estimation accuracies of Pinus densata forest AGB, and the increases of accuracy varied from 8% to 32% for 100 modeling plots and from 12% to 35% for 47 test plots based on root mean square error (RMSE); (2) compared with the models without the age dummy variable, the models with the age dummy variable greatly reduced the overestimations for the plots with AGB values smaller than 70 Mg/ha and the underestimations for the plots with AGB values larger than 180 Mg/ha and, thus, significantly improved the overall estimation accuracy by 14% to 42% for the modeling plots and by 32% to 44% for the test plots based on RMSE; and (3) the texture measures derived from the Landsat 8 OLI images contributed more to improving the estimation accuracy than the original spectral bands and other transformations. This implied that two nonparametric models, coupled with the use of the age dummy variable and texture measures, offered a great potential for improving the estimation accuracy of Pinus densata forest AGB.
Quickly and efficiently monitoring soil heavy metal content is crucial for protecting the natural environment and for human health. Estimating heavy metal content in soils using hyperspectral data is a cost-efficient method but challenging due to the effects of complex landscapes and soil properties. One of the challenges is how to make a lab-derived model based on soil samples applicable to mapping the contents of heavy metals in soil using air-borne or space-borne hyperspectral imagery at a regional scale. For this purpose, our study proposed a novel method using hyperspectral data from soil samples and the HuanJing-1A (HJ-1A) HyperSpectral Imager (HSI). In this method, estimation models were first developed using optimal relevant spectral variables from dry soil spectral reflectance (DSSR) data and field observations of soil heavy metal content. The relationship of the ratio of DSSR to moisture soil spectral reflectance (MSSR) with soil moisture content was then derived, which built up the linkage of DSSR with MSSR and provided the potential of applying the models developed in the laboratory to map soil heavy metal content at a regional scale using hyperspectral imagery. The optimal relevant spectral variables were obtained by combining the Boruta algorithm with a stepwise regression and variance inflation factor. This method was developed, validated, and applied to estimate the content of heavy metals in soil (As, Cd, and Hg) in Guangdong, China, and the Conghua district of Guangzhou city. The results showed that based on the validation datasets, the content of Cd could be reliably estimated and mapped by the proposed method, with relative root mean square error (RMSE) values of 17.41% for the point measurements of soil samples from Guangdong province and 17.10% for the Conghua district at the regional scale, while the content of heavy metals As and Hg in soil were relatively difficult to predict with the relative RMSE values of 32.27% and 28.72% at the soil sample level and 51.55% and 36.34% at the regional scale. Moreover, the relationship of the DSSR/MSSR ratio with soil moisture content varied greatly before the wavelength of 1029 nm and became stable after that, which linked DSSR with MSSR and provided the possibility of applying the DSSR-based models to map the soil heavy metal content at the regional scale using the HJ-1A images. In addition, it was found that overall there were only a few soil samples with the content of heavy metals exceeding the health standards in Guangdong province, while in Conghua the seriously polluted areas were mainly distributed in the cities and of 26 croplands. This study implies that the new approach provides the potential to map the content of heavy metals in soil, but the estimation model of Cd was more accurate than those of As and Hg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.