Highlights d High expression of HPK1 is correlated with increased T cell exhaustion d An HPK1-Blimp1 axis facilitates tumor-infiltrating T cell exhaustion d MAP4K1 KO CAR-T cells have enhanced antitumor effects compared with PDCD1 KO CAR-T cells d Both kinase inhibitor and PROTACs for HPK1 exhibited enhanced antitumor immunity
Purpose: Although autophagy occurs in most tumor cells following DNA damage, it is still a mystery how this DNA-damaging event turns on the autophagy machinery in multiple myeloma (MM) and how the functional status of autophagy impacts on its susceptibility to death in response to DNA-damaging chemotherapy.Experimental Design: We investigate the effects of DNA damage on autophagy in MM cells and elucidate its underlying molecular mechanism. Then, we examined the impacts of pharmacologic or genetic inhibition of autophagy on DNA damage-induced apoptosis. Furthermore, the antimyeloma activity of autophagy inhibitor in combination with DNA-damaging agents was evaluated in MM xenograft models.Results: We showed that DNA-damaging drugs, doxorubicin and melphalan, induce caspase-dependent apoptosis and concurrently trigger Beclin 1-regulated autophagy in human MM cell lines H929 and RPMI 8226. Mechanistically, association of autophagy execution proteins Beclin 1 with class III phosphoinositide 3-kinase, which is inhibited by Bcl-2 recruitment, contributes directly to the autophagic process. Importantly, targeting suppression of autophagy by minimally toxic concentrations of pharmacologic inhibitors (hydroxychloroquine and 3-methyladenine) or short hairpin RNAs against autophagy genes, Beclin 1 and Atg5, dramatically augments proapoptotic activity of DNA-damaging chemotherapy both in vitro using MM cell lines or purified patient MM cells and in vivo in a human plasmacytoma xenograft mouse model.Conclusion: These data can help unravel the underlying molecular mechanism of autophagy in DNAdamaged MM cells and also provide a rationale for clinical evaluation of autophagy inhibitors in combination with DNA-damaging chemotherapy in MM. Clin Cancer Res; 17(10); 3248-58. Ó2011 AACR.
The 26S proteasome inhibitor, bortezomib, has shown remarkable therapeutic efficacy in multiple myeloma (MM), however, the mechanism by which this compound acts remains unknown. Here, we have demonstrated that bortezomib targets the prototypical expression of unfolded protein response (UPR) genes BiP, CHOP and XBP-1 at the mRNA and protein levels, resulting in induction of proapoptotic UPR outputs and suppression of cytoprotective UPR components, leading to caspase-dependent apoptosis in human MM H929 and 8226/S cell lines. Moreover, knockdown of XPB-1s, via lentivirus-mediated RNA interference approach, sensitises MM cells to apoptosis induction by bortezomib. Together, these data strongly suggest that dysregulated or disruptive UPR may, at least partly, underlie the antimyeloma activity of bortezomib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.