SummaryThe human pathogenic fungus Candida albicans can cause systemic infections by invading epithelial barriers to gain access to the bloodstream. One of the main reservoirs of C. albicans is the gastrointestinal tract and systemic infections predominantly originate from this niche. In this study, we used scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes. Our data demonstrate that adhesion, invasion and damage by C. albicans depend not only on fungal morphology and activity, but also on the epithelial cell type and the differentiation stage of the epithelial cells, indicating that epithelial cells differ in their susceptibility to the fungus. C. albicans can invade epithelial cells by induced endocytosis and/or active penetration. However, depending on the host cell faced by the fungus, these routes are exploited to a different extent. While invasion into oral cells occurs via both routes, invasion into intestinal cells occurs only via active penetration.
SummaryCandida albicans is the most common oral fungal pathogen of humans, but the mechanisms by which C. albicans invades and persists within mucosal epithelium are not clear. To understand oral pathogenesis, we characterized the cellular and molecular mechanisms of epithelial-fungus interactions using reconstituted human oral epithelium (RHE). We observed that hyphal formation facilitates epithelial invasion via both active (physical penetration) and passive (induced endocytosis) processes. Genome wide transcript profiling of C. albicans experimental RHE infection was compared with that from 11 patient samples with pseudomembranous candidiasis to identify genes associated with disease development in vivo. Expression profiles reflected the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources and nitrosative stress. We identified several novel infection-associated genes with unknown function. One gene, upregulated in both RHE infection and patients, named EED1, was essential for maintenance of hyphal elongation. Mutants lacking EED1 showed transient cell elongation on epithelial tissue, which enabled only superficial invasion of epithelial cells. Once inside an epithelial cell, Deed1 cells could proliferate as yeasts or pseudohyphae but remained trapped intracellularly. Our results suggest that the adaptive response and morphology of C. albicans play specific roles for host-fungal interactions during mucosal infections.
We present the microbiological and molecular characterization of bacteria isolated from four chimpanzees and one gorilla thought to have died of an anthrax-like disease in Côte d'Ivoire and Cameroon. These isolates differed significantly from classic Bacillus anthracis by the following criteria: motility, resistance to the gamma phage, and, for isolates from Cameroon, resistance to penicillin G. A capsule was expressed not only after induction by CO 2 and bicarbonate but also under normal growth conditions. Subcultivation resulted in beta-hemolytic activity and gamma phage susceptibility in some subclones, suggesting differences in gene regulation compared to classic B. anthracis. The isolates from Côte d'Ivoire and Cameroon showed slight differences in their biochemical characteristics and MICs of different antibiotics but were identical in all molecular features and sequences analyzed. PCR and Southern blot analyses confirmed the presence of both the toxin and the capsule plasmid, with sizes corresponding to the B. anthracis virulence plasmids pXO1 and pXO2. Protective antigen was expressed and secreted into the culture supernatant. The isolates possessed variants of the Ba813 marker and the SG-749 fragment differing from that of classic B. anthracis strains. Multilocus sequence typing revealed a close relationship of our atypical isolates with both classic B. anthracis strains and two uncommonly virulent Bacillus cereus and Bacillus thuringiensis isolates. We propose that the newly discovered atypical B. anthracis strains share a common ancestor with classic B. anthracis or that they emerged recently by transfer of the B. anthracis plasmids to a strain of the B. cereus group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.