HighlightsSignificant growth reported in influenza vaccine production capacity since 2006.Seasonal influenza vaccine production capacity has reduced since 2013.Pandemic influenza vaccine production capacity is at its highest recorded level.Challenges remain regarding maintenance of capacity and equitable distribution.
Should a highly pathogenic avian influenza virus, such as the H5N1 virus type currently circulating in birds, become transmissible among humans, an effective vaccine, rapidly available in vast quantities, would be the best tool to prevent high case-fatalities and the breakdown of health and social services. The number of vaccine doses that could be produced on demand has risen sharply over the last few years; however, it is still alarmingly short of the 13 billion doses that would be needed if two doses were required to protect fully the world's population. Most developing countries would be last in the queue to benefit from a pandemic vaccine. The World Health Organization, together with governments, the pharmaceutical industry and other stakeholders, has been implementing the global pandemic influenza action plan to increase vaccine supply since 2006. Building capacity in developing countries to manufacture influenza vaccine is an integral part of this plan, as well as research and development into more efficacious technologies, e.g. those that allow significant dose-sparing. To this end, the influenza vaccine technology transfer initiative was launched in 2007 and, to date, vaccine manufacturers in 11 developing countries have received grants to acquire the capacity to produce inactivated or live attenuated influenza vaccine for their populations. In addition, a centralized 'hub' has been established to facilitate training in the new technologies for scientists and regulators in the countries. This supplement of Vaccine is devoted to showcasing the interim results of the WHO initiative and the impressive progress made by the developing country manufacturers.
Background and aimThe majority of seasonal influenza vaccines are trivalent, containing two A virus strains (H1N1 and H3N2) and one B virus strain. The co-circulation of two distinct lineages of B viruses can lead to mismatch between the influenza B virus strain recommended for the trivalent seasonal vaccine and the circulating B virus. This has led some manufacturers to produce quadrivalent influenza vaccines containing one strain from each B lineage in addition to H1N1 and H3N2 strains. However, it is also important to know whether vaccines containing a single influenza B strain can provide cross-protectivity against viruses of the antigenically distinct lineage. The aim of this study was to assess in naïve ferrets the potential cross-protective activity of trivalent live attenuated influenza vaccine (T-LAIV) against challenge with a heterologous wild-type influenza B virus belonging to the genetically different lineage and to compare this activity with effectiveness of quadrivalent LAIV (Q-LAIV) in the ferret model.Methods and resultsFerrets were vaccinated with either one dose of trivalent LAIV containing B/Victoria or B/Yamagata lineage virus, or quadrivalent LAIV (containing both B lineages), or placebo. They were then challenged with B/Victoria or B/Yamagata lineage wild-type virus 28 days after vaccination. The ferrets were monitored for clinical signs and morbidity. Nasal swabs and lung tissue samples were analyzed for the presence of challenge virus. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay. All LAIVs tested were found to be safe and effective against wild-type influenza B viruses based on clinical signs, and virological and histological data. The absence of interference between vaccine strains in trivalent and quadrivalent vaccine formulations was confirmed. Trivalent LAIVs were shown to have the potential to be cross-protective against infection with genetically different influenza B/Victoria and B/Yamagata lineages.ConclusionsIn this ferret model, quadrivalent vaccine provided higher protection to challenge against both B/Victoria and B/Yamagata lineage viruses. However, T-LAIV provided some cross-protection in the case of a mismatch between circulating and vaccine type B strains. Notably, B/Victoria-based T-LAIV was more protective compared to B/Yamagata-based T-LAIV.
In high-income countries, there is an increased tendency to replace inactivated seasonal trivalent influenza (TIV) vaccines with quadrivalent (QIV) vaccines as these are considered to give a greater public health benefit. In addition, several recent studies from the USA and Europe indicate that replacement with QIV might also be cost-effective; however, the situation in low- and middle-income countries (LMIC) is less clear as few studies have investigated this aspect. The paper by de Boer et al. (2008) describes a dynamic modelling study commissioned by WHO that suggests that in LMICs, under certain conditions, QIV might also be more cost-effective than TIV. In this commentary, we discuss some important aspects that policymakers in LMICs might wish to take into account when considering replacing TIV by QIV. Indeed, from the data presented in the paper by de Boer et al. it can be inferred that replacing QIV for TIV would mean a 25-29% budget increase for seasonal influenza vaccination in South Africa and Vietnam, resulting in an incremental influenza-related health impact reduction of only 7-8% when a 10% symptomatic attack rate is assumed. We argue that national health budget considerations in LMIC might lead decision-makers to choose other investments with higher health impact for a budget equivalent to roughly a quarter of the yearly TIV immunization costs. In addition to an increased annual cost that would be associated with a decision to replace TIV with QIV, there would be an increased pressure on manufacturers to produce QIV in time for the influenza season requiring manufacturers to produce some components of the seasonal vaccine at risk prior to the WHO recommendations for influenza vaccines. Unless the current uncertainties, impracticalities and increased costs associated with QIVs are resolved, TIVs are likely to remain the more attractive option for many LMICs. Each country should establish its context-specific process for decision-making based on national data on disease burden and costs in order to determine whether the health gains out-weigh the additional cost of moving to QIV. For example, immunizing more people in the population, especially those in higher risk groups, with TIV might not only provide better value for money but also deliver better health outcomes in LMICs. Countries with local influenza vaccine manufacturing capacity should include in their seasonal influenza vaccine procurement process an analysis of the pros- and cons- of TIV versus QIV, to ensure both feasibility and sustainability of local manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.