With Transmit SENSE, we demonstrate the feasibility of uniformly exciting a volume such as the human brain at 7T through the use of an original minimalist transmit k-space coverage, referred to as ''k T -points.'' Radio-frequency energy is deposited only at a limited number of k-space locations in the vicinity of the center to counteract transmit sensitivity inhomogeneities. The resulting nonselective pulses are short and need little energy compared to adiabatic or other B þ 1 -robust pulses available in the literature, making them good candidates for shortrepetition time 3D sequences at high field. Experimental verification was performed on three human volunteers at 7T by means of an 8-channel transmit array system. On average, whereas the standard circularly polarized excitation resulted in a 33%-flip angle spread (standard deviation over mean) throughout the brain, and a static radio-frequency shim showed flip angle variations of 17% and up, application of k T -point-based excitations demonstrated excellent flip angle uniformity (8%) for a small target flip angle and with sub-millisecond durations. Magn Reson Med 67:72-80,
Parallel transmission (pTx) technology, despite its great potential to mitigate the transmit field inhomogeneity problem in magnetic resonance imaging at ultra-high field (UHF), suffers from a cumbersome calibration procedure, thereby making the approach problematic for routine use. The purpose of this work is to demonstrate on two different 7T systems respectively equipped with 8-transmit-channel RF coils from two different suppliers (Rapid-Biomed and Nova Medical), the benefit of so-called universal pulses (UP), optimized to produce uniform excitations in the brain in a population of adults and making unnecessary the calibration procedures mentioned above. Non-selective and slice-selective UPs were designed to return homogeneous excitation profiles throughout the brain simultaneously on a group of ten subjects, which then were subsequently tested on ten additional volunteers in magnetization prepared rapid gradient echo (MPRAGE) and multi-slice gradient echo (2D GRE) protocols. The results were additionally compared experimentally with the standard non-pTx circularly-polarized (CP) mode, and in simulation with subject-specific tailored excitations. For both pulse types and both coils, the UP mode returned a better signal and contrast homogeneity than the CP mode. Retrospective analysis of the flip angle (FA) suggests that the FA deviation from the nominal FA on average over a healthy adult population does not exceed 11% with the calibration-free parallel-transmit pulses whereas it goes beyond 25% with the CP mode. As a result the universal pulses designed in this work confirm their relevance in 3D and 2D protocols with commercially available equipment. Plug-and-play pTx implementations henceforth become accessible to exploit with more flexibility the potential of UHF for brain imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.