MAXI J1820+070 is a low-mass X-ray binary with a black hole as a compact object. This binary underwent an exceptionally bright X-ray outburst from March to October 2018, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 hours of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to ∼ 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential high-energy and very-high-energy gamma-ray emitting region should be located at a distance from the black hole ranging between 10 11 and 10 13 cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
In 2021 July, PKS 1510−089 exhibited a significant flux drop in the high-energy γ-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy γ-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy γ-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy γ-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line of sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images.
The evidence for multi-messenger photon and neutrino emission from the blazar TXS 0506+056 has demonstrated the importance of realtime follow-up of neutrino events by various ground-and space-based facilities. The effort of H.E.S.S. and other experiments in coordinating observations to obtain quasi-simultaneous multiwavelength flux and spectrum measurements has been critical in measuring the chance coincidence with the high-energy neutrino event IC-170922A and constraining theoretical models. For about a decade, the H.E.S.S. transient program has included a search for gamma-ray emission associated with high-energy neutrino alerts, looking for gammaray activity from known sources and newly detected emitters consistent with the neutrino location. In this contribution, we present an overview of follow-up activities for realtime neutrino alerts with H.E.S.S. in 2021 and 2022. Our analysis includes both public IceCube neutrino alerts and alerts exchanged as part of a joint H.E.S.S.-IceCube program. We focus on interesting coincidences observed with gamma-ray sources, particularly highlighting the significant detection of PKS 0625-35, an AGN previously detected by H.E.S.S., and three IceCube neutrinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.