Following the screening of a battery of distinct smallinterfering RNAs that target various components of the apoptotic machinery, we found that knockdown of the voltage-dependent anion channel 1 (VDAC1) was particularly efficient in preventing cell death induced by cisplatin (CDDP) in non-small cell lung cancer cells. Both the downregulation of VDAC1 and its chemical inhibition with 4,4 0 -diisothiocyanatostilbene-2,2 0 -disulfonic acid reduced the apoptosis-associated modifications induced by CDDP, including mitochondrial transmembrane potential dissipation and plasma membrane permeabilization. VDAC1 inhibition strongly reduced the CDDP-induced conformational activation of Bax, yet had no discernible effect on the activation of Bak, suggesting that VDAC1 acts downstream of Bak and upstream of Bax. Accordingly, knockdown of Bak abolished the activation of Bax, whereas Bax downregulation had no effect on Bak activation. In VDAC1-depleted cells, the failure of CDDP to activate Bax could be reversed by means of the Bcl-2/ Bcl-X L antagonist ABT-737, which concomitantly restored CDDP cytotoxicity. Altogether, these results delineate a novel pathway for the induction of mitochondrial membrane permeabilization (MMP) in the course of CDDPinduced cell death that involves a hierarchical contribution of Bak, VDAC1 and Bax. Moreover, our data suggest that VDAC1 may act as a facultative regulator/effector of MMP, depending on the initial cytotoxic event.
Non-small cell lung cancer (NSCLC) with activating mutations in the epidermal growth factor receptor (EGFR) responds to EGFR tyrosine kinase inhibitors such as erlotinib. However, secondary somatic EGFR mutations (e.g., T790M) confer resistance to erlotinib. BMS-690514, a novel panHER/vascular endothelial growth factor receptor (VEGFR) inhibitor described here, exerted antiproliferative and proapoptotic effects on NSCLC cell lines, with prominent efficacy on H1975 cells expressing the T790M mutation. In this model, BMS-690514 induced a G 1 cell cycle arrest, as well as ultrastructural hallmarks of apoptosis, mitochondrial release of cytochrome c, and activation of caspases involved in the intrinsic (e.g., caspase-2, caspase-3, caspase-7, and caspase-9), but not in the extrinsic (e.g., caspase-8), pathway. Caspase inhibition conferred partial protection against BMS-690514 cytotoxicity, pointing to the involvement of both caspasedependent and caspase-independent effector mechanisms. Transcriptome analyses revealed the up-regulation of proapoptotic (e.g., Bim, Puma) and cell cycle inhibitory (e.g., p27Kip1 , p57 Kip2 ) factors, as well as the down-regulation of antiapoptotic (e.g., Mcl1), heat shock (e.g., HSP40, HSP70, HSP90), and cell cycle promoting [e.g., cyclins B1, D1, and D3; cyclin-dependent kinase 1 (CDK1); MCM family proteins; proliferating cell nuclear antigen (PCNA)] proteins. BMS-690514-induced death of H1975 cells was modified in a unique fashion by a panel of small interfering RNAs targeting apoptosis modulators. Down-regulation of components of the nuclear factor-KB survival pathway (e.g., p65, Nemo/IKK;, TAB2) sensitized cells to BMS-690514, whereas knockdown of proapoptotic factors (e.g., Puma, Bax, Bak, caspase-2, etc.) and DNA damage-related proteins (e.g., ERCC1, hTERT) exerted cytoprotective effects. BMS-690514 is a new pan-HER/VEGFR inhibitor that may become an alternative to erlotinib for the treatment of NSCLC. [Cancer Res 2007;67(13):6253-62]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.